To get radius, divide the diameter into 2. 3.6÷2 = 1.8 cm
Answer:
The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Explanation:
From the given information:
The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol.
In this same concentration for the glucose and fructose; the reaction rate can be calculated by the rate factor which can be illustrated from the Arrhenius equation;
Rate factor in the absence of catalyst:

Rate factor in the presence of catalyst:

Assuming the catalyzed reaction and the uncatalyzed reaction are taking place at the same temperature :
Then;
the ratio of the rate factors can be expressed as:

![\dfrac{k_2}{k_1}={ \dfrac {e^{[ Ea_1 - Ea_2 ] }}{RT} }}](https://tex.z-dn.net/?f=%5Cdfrac%7Bk_2%7D%7Bk_1%7D%3D%7B%20%20%5Cdfrac%20%7Be%5E%7B%5B%20%20Ea_1%20-%20Ea_2%20%5D%20%7D%7D%7BRT%7D%20%7D%7D)
Thus;

Let say the assumed temperature = 25° C
= (25+ 273)K
= 298 K
Then ;



The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Answer:
-133.2 kJ
Explanation:
Let's consider the following balanced equation.
4 KClO₃(s) → 3 KClO₄(s) + KCl(s)
We can calculate the standard Gibbs free energy of the reaction (ΔG°rxn) using the following expression.
ΔG°rxn = 3 mol × ΔG°f(KClO₄(s)) + 1 mol × ΔG°f(KCl(s)) - 4 mol × ΔG°f(KClO₃(s))
ΔG°rxn = 3 mol × (-303.1 kJ/mol) + 1 mol × (-409.1 kJ/mol) - 4 mol × (-296.3 kJ/mol)
ΔG°rxn = -133.2 kJ
Answer:
When the solar system settled into its current layout about 4.5 billion years ago, Earth formed when gravity pulled swirling gas and dust in to become the third planet from the Sun. Like its fellow terrestrial planets, Earth has a central core, a rocky mantle and a solid crust.