Answer:
i think the answer is A....
Explanation:
Igneous rocks (from the Latin word for fire) form when hot, molten rock crystallizes and solidifies. The melt originates deep within the Earth near active plate boundaries or hot spots, then rises toward the surface.
The density of the unknown material is 0.213 ml/g
<h3>
Apparent density of the unknown material</h3>
The apparent density of the unknown material is calculated as follows;
Volume of the unknown substance = 126 ml - 102 ml = 24 ml
Density of the unknown substance = mass/volume
Density of the unknown substance = 24 ml / 112.6 g
Density of the unknown substance = 0.213 ml/g
Thus, the density of the unknown material is 0.213 ml/g
Learn more about density here; brainly.com/question/6838128
#SPJ1
Answer:
The pH is 7.54
Explanation:
The Henderson - Hasselbalch equation states that for a buffer solution which consists of a weak acid and its conjugate base, the buffer pH is given by:
pH ![=pk_{a} +log(\frac{[conjugate base]}{[weakacid]})](https://tex.z-dn.net/?f=%3Dpk_%7Ba%7D%20%2Blog%28%5Cfrac%7B%5Bconjugate%20base%5D%7D%7B%5Bweakacid%5D%7D%29)
pkₐ is for the acid
In this case, the buffer hypochlorous acid HClO is a weak acid, and its conjugate base is the hypochlorite anion ClO⁻ is delivered to the solution via sodium hypochlorite NaClO
.
NaCIO = 0.200 M
HCIO = 0.200 M
pkₐ = -log₁₀ kₐ = -log₁₀ (2.9 × 10⁻⁸) = 7.54
∴pH =
= 7.54
What is the noble gas notation of Titanium in the ground state?
Answer: Titanium atoms have 22 electrons and the shell structure is 2.8. 10.2. The ground state electron configuration of ground state gaseous neutral titanium is [Ar]. 3d2.
The pressure inside the flask on heating it is given as 1.21 atm.
<u>Explanation:</u>
As per Guy Lussac's law, the pressure of any concealed volume of gas particles will be directly proportional to the temperature of the container of the gas particles.
So P ∝ T
To convert celsius to kelvin, add 273.15 to the temperature value in celsius
Since, here the initial temperature of the flask is given as 24°C, so in kelvin it will be 297.15 K. Similarly, the final temperature is said to be 104°C which will be equal to 377.15 K. Then the final pressure will be increased as there is increase in temperature. So, the final pressure inside the flask can be obtained as


So, the pressure inside the flask on heating it is given as 1.21 atm.