Answer:
It will take 15.55s for the police car to pass the SUV
Explanation:
We first have to establish that both the police car and the SUV will travel the same distance in the same amount of time. The police car is moving at constant velocity and the SUV is experiencing a deceleration. Thus we will use two distance fromulas (for constant and accelerated motions) with the same variable for t and x:
1. 
2. 
Since both cars will travel the same distance x, we can equal both formulas and solve for t:

We simplify the fraction present and rearrange for our formula so that it equals 0:

In the very last step we factored a common factor t. There is two possible solutions to the equation at
and:

What this means is that during the displacement of the police car and SUV, there will be two moments in time where they will be next to each other; at
(when the SUV passed the police car) and
(when the police car catches up to the SUV)
Answer:
laser pointer does not make use of total internal reflection
Answer:
20 hertz of frequency produced.
Explanation:

Here we will find frequency and period should be in second, here given: 0.05 seconds
using the formula:


Not that we know of today, but we didn't know about dark matter until a few years ago.
Answer:
yes
Explanation: Work is done when there is movement. Therefore it was work was being done.