Answer:
pH = 4.8
Explanation:
A buffer is formed by a weak acid (0.145 M HC₂H₃O₂) and its conjugate base (0.202 M C₂H₃O₂⁻ coming from 0.202 M KC₂H₃O₂). The pH of a buffer system can be calculated using Henderson-Hasselbalch's equation.
The atomic number of the undiscovered element is 168
Element 118 will have just filled its 7p orbitals. therefore the predicted element to fill completely up to its 8 p orbital would have to filled a whole set of s, p, d, f and g orbitals
That's another 2 + 6 + 10 +14 + 18 = 50 electrons
To determine the total number of quantum numbers we have to find
Nml × Nms
we have Nml × Nms = ( 2 + 1 ) × 2
8s + 8P + 7d + 6f + 5g = 2 + 6 + 10 + 14 + 18 = 50
The element right below should be
Z = 118 + 50
= 168
Hence the atomic number of the undiscovered element is 168
Learn more about the atomic number on
brainly.com/question/14514242
#SPJ4
In a chemical equation, the arrow
A. can be read as "yields" or "makes."
B. always points toward the products.
C. separates the products and reactants.
D. all of these
all of these options are right.
The masses of the components are obtained as;
- Sodium hydrogen carbonate = 3.51 g
- Sodium carbonate = 8.708 g
<h3>What is decomposition?</h3>
The term decomposition has to do with the breakdown of the given substance into its components. The components of sodium hydrogen carbonate could be identified as water vapor, carbon dioxide gas and sodium carbonate. Among these products that have been listed here, we can see that it is only the sodium carbonate that remains as a solid. The others are gases that move away from the system that is under study.
Now putting down the equation of the reaction, we have;
Now, the loss in mass must be due to the carbon dioxide and the water. Hence we obtain the loss in mass to be 10.000 g - 8.708 g = 1.292 g
Mass of sodium hydrogen carbonate = 2 * 88 g/mol * 1.292 g/62 g/mol
= 3.51 g
Learn more about anhydrous sodium carbonate :brainly.com/question/20479996
#SPJ1