The magnitude of the electric force on the charge is 5 N.
<h3>Magnitude of force on the charge</h3>
The magnitude of force on the charge is calculated as follows;
F = Eq
where;
- E is electric field
- q is magnitude of the charge
F = 100 N/C x 0.05 C
F = 5 N
Thus, the magnitude of the electric force on the charge is 5 N.
Learn more about electric force here: brainly.com/question/20880591
#SPJ1
Answer:
Newton's third law of motion states that whenever a first object exerts a force on a second object, the first object experiences a force equal in magnitude but opposite in direction to the force that it exerts. ... Newton's third law is useful for figuring out which forces are external to a system.
Explanation:
is these what you're looking for?
<span>The de-acceleration or negative acceleration of stopping is what damages bones. The ground is rigid and therefore the change in momentum when striking the ground will be large. On the trampoline, the elasticity of the material means that the momentum changes more slowly, resulting in smaller accelerations.</span>
Answer:
The frog takes 8 jumps to reach top of well
Explanation:
Given data
Frog at bottom=17 foot
Each time frog leaps 3 feet
Frog has not reached the top of the well, then the frog slides back 1 foot
To Find
Total number of leaps the frog needed to escape from well
Solution
in 1 jump distance jumped=3+(-1)
=2 feet
=2×1 feet
The "-1" is because the frog goes back
Now After 2 jumps the distance jumped as:
Distance Jumped=2+2
Distance Jumped=2*2
=4 feet
Similarly after 7 jumps
Distance Jumped=2+2+......+2
Distance Jumped=2*7
=14 feet
Now after 8th jump the frog climbs but doesnot slide back as it is reached to the top of well.
So
Distance Jumped=(Distance Jumped after 7 jumps)+3
=14+3
=17 feet
The frog takes 8 jumps to reach top of well