When there's a hazard ahead, it's almost always quicker for you to steer away than to come to a full stop.
<h3>What is an hazard?</h3>
Hazard refers to any obstacle or other feature which causes risk or danger.
Living organisms respond to hazards via the production of adrenaline hormone. This hormone causes a flight response away from the hazard.
Therefore, when there's a hazard ahead, it's almost always quicker for you to steer away than to come to a full stop.
Learn more about hazards at: brainly.com/question/5338299
1. a. longitudinal waves.
There are two types of waves:
- Transverse waves: in transverse waves, the oscillations of the wave occur in a direction perpendicular to the direction of propagation of the wave
- Longitudinal waves: in longitudinal waves, the oscillations of the waves occur parallel to the direction in which the waves are travelling.
So, these types of waves are called longitudinal waves.
2. d. a medium
There are two types of waves:
- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field, and they can travel both in a medium and also in a vacuum (they do not need a medium to propagate)
- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, so they need a medium to propagate - therefore, the correct choice is d. a medium
3. a. AM/FM radio
Analogue signals consist of continuous signals, which vary in a continuous range of values. On the contrary, digital signals consist of discrete signals, which can assume only some discrete values. For AM and FM radios, signals are transmitted by using analogue signals.
Answer:
B. The presence of an unbalanced force(e.g friction) causes a moving object to stop.
Explanation:
As the friction is that force that can stop the sled upon reaching the levelled surface so the option b is correct.
Answer:
A. Two tennis balls that are near each other
Explanation:
The formula for gravitational force (F) between two objects is

where m₁ and m₂ are the masses of the two objects, d is the distance between their centres, and G is the gravitational constant.
Thus, two objects that are far from each other will have a smaller gravitational force. We can eliminate Options C and D.
If the objects are at the same distance, those with the smaller mass will have a smaller force.
The mass of a tennis ball is 57 g.
The mass of a soccer ball is 430 g.
Two tennis balls that are near each other will have a smaller gravitational attraction.