Answer : The balanced equations will be:

Explanation :
The general rate of reaction is,

Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The expression for rate of reaction will be :
![\text{Rate of disappearance of A}=-\frac{1}{a}\frac{d[A]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20A%7D%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of B}=-\frac{1}{b}\frac{d[B]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20B%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![\text{Rate of formation of C}=+\frac{1}{c}\frac{d[C]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20C%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D)
![\text{Rate of formation of D}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20D%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
![Rate=-\frac{1}{a}\frac{d[A]}{dt}=-\frac{1}{b}\frac{d[B]}{dt}=+\frac{1}{c}\frac{d[C]}{dt}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
From this we conclude that,
In the rate of reaction, A and B are the reactants and C and D are the products.
a, b, c and d are the stoichiometric coefficient of A, B, C and D respectively.
The negative sign along with the reactant terms is used simply to show that the concentration of the reactant is decreasing and positive sign along with the product terms is used simply to show that the concentration of the product is increasing.
Now we have to determine the balanced equations corresponding to the following rate expressions.
![Rate=-\frac{d[CH_4]}{dt}=-\frac{1}{2}\frac{d[O_2]}{dt}=+\frac{1}{2}\frac{d[H_2O]}{dt}=+\frac{d[CO_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BCH_4%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BCO_2%5D%7D%7Bdt%7D)
The balanced equations will be:

Answer:
B. An ionized atom has a number of protons that is unequal to the number of electrons.
Explanation:
For a neutral atom , the number of proton and electron is equal. An ionized atom has either loss or gain electron, thereby making the number of proton and electron unequal. The answer B is true because an ionized atom has either loss or gain electron to make the number of electron and proton unequal.
Option A is incorrect because a cations holds a positive charge when it loss one or more electron not when it gains one or more electron(s). Anions possess negative charge for gaining electron(s).
Option C is not true because ions can also carry negative charges and they are called anions.
Option D is false because losing one or more electron will turn an atom to a cations.
Answer:
a: 1
b: 4.5x10⁻⁴
c: 1.125x10⁻⁶
[H₃O⁺] = 0.000859M
Explanation:
As HNO₂ is a weak acid, its equilibrium in water is:
HNO₂(aq) + H₂O(l) ⇄ H₃O⁺(aq) + NO₂⁻(aq)
Equilibrium constant, ka, is defined as:
ka = 4.5x10⁻⁴ = [H₃O⁺] [NO₂⁻] / [HNO₂] <em>(1)</em>
Equilibrium concentration of each specie are:
[HNO₂] = 0.00250M - x
[H₃O⁺] = x
[NO₂⁻] = x
Replacing in (1):
4.5x10⁻⁴ = x × x / 0.00250M - x
1.125x10⁻⁶ - 4.5x10⁻⁴x = x²
0 = x² + 4.5x10⁻⁴x - 1.125x10⁻⁶
As the quadratic equation is ax² + bx + c = 0
Coefficients are:
a: 1
b: 4.5x10⁻⁴
c: 1.125x10⁻⁶
Now, solving quadratic equation:
x = -0.0013 → False answer, there is no negative concentrations.
<em>x = 0.000859</em>
As [H₃O⁺] = x; <em>[H₃O⁺] = 0.000859M</em>
I hope it helps!