Answer:
Explanation:
Let the tension in the string be T . At the top of the circle , total force acting on them = T + mg . This will provide centripetal force
T + mg = m v² / r
4 + .25 x 9.8 = .25 x v² / .62
6.45 = .25 v² / .62
v² = 16
v = 4 m /s .
Given :
Initial velocity , u = 0 m/s² .
To Find :
The acceleration of the cart.
Solution :
Since, acceleration is constant.
Using equation of motion :

Putting, t = 1 s and x = 4 m in above equation, we get :

Therefore, the acceleration of the cart is 8 m/s².
Answer:
a =( -0.32 i ^ - 2,697 j ^) m/s²
Explanation:
This problem is an exercise of movement in two dimensions, the best way to solve it is to decompose the terms and work each axis independently.
Break down the speeds in two moments
initial
v₀ₓ = v₀ cos θ
v₀ₓ = 5.25 cos 35.5
v₀ₓ = 4.27 m / s
= v₀ sin θ
= 5.25 sin35.5
= 3.05 m / s
Final
vₓ = 6.03 cos (-56.7)
vₓ = 3.31 m / s
= v₀ sin θ
= 6.03 sin (-56.7)
= -5.04 m / s
Having the speeds and the time, we can use the definition of average acceleration that is the change of speed in the time order
a = (
- v₀) /t
aₓ = (3.31 -4.27)/3
aₓ = -0.32 m/s²
= (-5.04-3.05)/3
= -2.697 m/s²
Answer:
<h3>B. 19miles</h3>
Explanation:
If Freddy drives 4 miles east to his friend's house. He then travels 9 more miles east to the supermarket. Finally on his way back home he out of gas 6 miles after leaving the supermarket, the distance travel by fred will be the sup of all the distances he covered throughout the journey.
Distance covered by fred = 4miles + 9miles + 6miles
Distance covered by fred = 13miles + 6miles
Distance covered by fred = 19miles