Answer:
option (D)
Explanation:
Here initial rotation speed is given, final rotation speed is given and asking for time.
If we use
A) θ=θ0+ω0t+(1/2)αt2
For this equation, we don't have any information about the value of angular displacement and angular acceleration, so it is not useful.
B) ω=ω0+αt
For this equation, we don't have any information about angular acceleration, so it is not useful.
C) ω2=ω02+2α(θ−θ0)
In this equation, time is not included, so it is not useful.
D) So, more information is needed.
Thus, option (D) is true.
] Ceres is composed of rock and ice and is estimated to comprise approximately one third of the mass of the entire asteroid belt. Ceres is the only object in the asteroid belt known to be rounded by its own gravity (though detailed analysis was required to exclude 4 Vesta). From Earth, the apparent magnitude of Ceres ranges from 6.7 to 9.3, peaking once every 15 to 16 months,[21]hence even at its brightest it is too dim to be seen with the naked eye except under extremely dark skies.
Answer:
Acceleration, 
Explanation:
Initial velocity of a particle in vector form, u = (-5i - 2j) m/s
Final velocity of particle in vector form, v = (-6i + 7j) m/s
Time taken, t = 8 seconds
We need to find the magnitude of acceleration vector. The changing of velocity w.r.t time is called acceleration of a particle. It is given by :

or

Hence, the value of acceleration vector is solved.
Answer:
A. Increasing the voltage of the battery
Explanation:
The relationship between voltage, V, current, I and resistance, R, is given as follows;
V = I × R
∴ I = V/R
From the above relationship, the current flowing in the circuit is directly proportional to the voltage of the battery, and inversely proportional to the resistance, 'R', of the circuit
Therefore, increasing the voltage, 'V', of the battery, increases the total current, 'I', flowing in the circuit.
Answer:
576 joules
Explanation:
From the question we are given the following:
weight = 810 N
radius (r) = 1.6 m
horizontal force (F) = 55 N
time (t) = 4 s
acceleration due to gravity (g) = 9.8 m/s^{2}
K.E = 0.5 x MI x ω^{2}
where MI is the moment of inertia and ω is the angular velocity
MI = 0.5 x m x r^2
mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg
MI = 0.5 x 82.65 x 1.6^{2}
MI = 105.8 kg.m^{2}
angular velocity (ω) = a x t
angular acceleration (a) = torque ÷ MI
where torque = F x r = 55 x 1.6 = 88 N.m
a= 88 ÷ 105.8 = 0.83 rad /s^{2}
therefore
angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s
K.E = 0.5 x MI x ω^{2}
K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules