Answer:
(a) 6650246.305 N/C
(b) 24150268.34 N/C
(c) 6408227.848 N/C
(d) 665024.6305 N/C
Explanation:
Given:
Radius of the ring (r) = 10.0 cm = 0.10 m [1 cm = 0.01 m]
Total charge of the ring (Q) = 75.0 μC = [1 μC = 10⁻⁶ C]
Electric field on the axis of the ring of radius 'r' at a distance of 'x' from the center of the ring is given as:
Plug in the given values for each point and solve.
(a)
Given:
,
Electric field is given as:
(b)
Given:
,
Electric field is given as:
(c)
Given:
,
Electric field is given as:
(d)
Given:
,
Electric field is given as:
Weight on moon = (0.16) • Earth weight
The kinetic energy (KE) is 250 J and the gravitational potential energy (GPE) is 392 J
Yes. On a circular path, the direction of motion is constantly changing. Change of direction is acceleration, even at constant speed.
Answer:
Explanation:
Given that,
Force is downward I.e negative y-axis
F = -2 × 10^-14 •j N
Magnetic field is westward, +x direction
B = 8.3 × 10^-2 •i T
Charge of an electron
q = 1.6 × 10^-19C
Velocity and it direction?
Force in a magnetic field is given as
F = q(V×B)
Angle between V and B is 270, check attachment
The cross product of velocity and magnetic field
F =qVB•Sin270
2 × 10^-14 = 1.6 × 10^-19 × V × 8.3 × 10^-2
Then,
v = 2 × 10^-14 / (1.6 × 10^-19 × 8.3 × 10^-2)
v = 1.51 × 10^6 m/s
Direction of the force
Let x be the direction of v
-F•j = v•x × B•i
From cross product
We know that
i×j = k, j×i = -k
j×k =i, k×j = -i
k×i = j, i×k = -j OR -k×i = -j
Comparing -k×i = -j to given problem
We notice that
-F•j = q ( -V•k × B×i)
So, the direction of V is negative z- direction
V = -1.51 × 10^6 •k m/s