Well it occurs in igneous, metamorphic, and sedimentary rocks.
quartz is a mineral, not a rock.
it is abundant or in other words rich.
Answer:
a)n= 3.125 x
electrons.
b)J= 1.515 x
A/m²
c)
=1.114 x
m/s
d) see explanation
Explanation:
Current 'I' = 5A =>5C/s
diameter 'd'= 2.05 x
m
radius 'r' = d/2 => 1.025 x
m
no. of electrons 'n'= 8.5 x
a) the amount of electrons pass through the light bulb each second can be determined by:
I= Q/t
Q= I x t => 5 x 1
Q= 5C
As we know that: Q= ne
where e is the charge of electron i.e 1.6 x
C
n= Q/e => 5/ 1.6 x 
n= 3.125 x
electrons.
b) the current density 'J' in the wire is given by
J= I/A => I/πr²
J= 5 / (3.14 x (1.025x
)²)
J= 1.515 x
A/m²
c) The typical speed'
' of an electron is given by:
=
=1.515 x
/ 8.5 x
x |-1.6 x
|
=1.114 x
m/s
d) According to these equations,
J= I/A
=
=
If you were to use wire of twice the diameter, the current density and drift speed will change
Increase in the diameter increase the cross sectional area and decreases the current density as it has inverse relation.
Also drift velocity will decrease as it is inversely proportional to the area
Answer:
I believe the answer is It increases
On Earth, the acceleration of gravity is 9.8 m/s² downward.
So any object with only gravity acting on it gains 9.8 m/s of
downward speed every second.
If the rock starts out moving upward at 10 m/s, then it will
continue upward for only (10/9.8) = 1.02 second, before
it stops rising and starts falling.
Its average speed during that time is (1/2) (10 + 0) = 5 m/s .
At an average speed of 5 m/s for 1.02 sec,
the rock rises
(5 m/s) x (1.02 sec) = 5.102 meters .
The equation for force is F=ma. Because we have the value of mass (0.42 kg) and the acceleration (14.8 m/s^2), simply plug them into the equation for force to get

The answer is 6.22 N because newtons are the unit used to measure force.