Conduction. Because they are connected as they tranfer energy
<span>You are given two cars, one in front of the other, that are traveling down the highway at 25 m/s. You are also given a frequency of 500 Hz of the car travelling behind it. You are asked what is the frequency heard by the driver of the lead car. This problem can be solved using the Doppler effect
sound frequency heard by the lead car = [(speed of sound + lead car velocity)/( speed of sound + behind car velocity)] * (sound of frequency of the behind car)
</span>sound frequency heard by the lead car = [(340 m/s + 25 m/s)/(340 m/s - 25 m/s)] * (500 Hz)
sound frequency heard by the lead car = 579 Hz
Hi there!
The energy that is about to or can be released from an object after energy has been transferred to it is called potential energy. In this case, as the diver jumps, potential energy is stored in the board as it bends. The potential energy is then released as kinetic energy when the board springs back up and the diver actually jumps.
Hope this helps!
Missing information
Consider a superconducting MRI magnet for which the magnet field decreases from 8.0 T to nearly 0 in 20 s
Answer:
0.152 mV
Explanation:
Change in magnetic field, dB=8-0=8 T
Time interval, dt=20 s
Diameter of ring= 2.2cm hence radius is 1.1 cm equivalent to 0.011
where n is the number of terms and for this question n=1 and A is area which is given by
hence
and substituting the values
Therefore, induced emf is 0.152 mV