<u>Answer:</u>
Carbon and silicon both are tetravalent elements as compared to germanium, tin, and lead which are divalent.
That's because Ge, tin, and Pb show inert pair effect and has a greater nuclear effective charge on the 's' electrons due to poor shielding effect. .That's why these elements are not able to share their valence electrons while carbon and silicon does and show "catenation" which is the ability to form long chain molecules.
The balanced equation for the reaction is
CO(g) + 2H₂(g) ⇄ CH₃<span>OH(g)
Since given concentrations are at equilibrium state, the expression for the equilibrium constant, k can be written as
k = [</span>CH₃OH(g)] / [CO(g)] [H₂(g) ]²
By substitution,
k = 0.030 M / 0.020 M x (<span>0.072 M</span>)²
k = 289.35 M⁻²
Answer:
Option (1) Br– is the catalyst, and the reaction follows a faster pathway with Br– than without
Explanation:
Let us consider the equation below:
Step 1:
H2O2(aq) + Br–(aq) → H2O(l) + BrO–(aq)
Step 2:
BrO–(aq) + H2O2(aq) → H2O(l) + O2(g) + Br–(aq)
From the above equation, we can see that Br– is unchanged.
This implies that Br– is the catalyst as catalyst does not take part in a chemical reaction but they create an alternate pathway to lower the activation energy in order for the reaction to proceed at a much faster rate to arrive at the products.
Answer:
This is the balanced equation:
Pb(NO₃)₂ (aq) + 2NaI (aq) → 2NaNO₃ (aq) + PbI₂ (s) ↓
Explanation:
This are the reactants:
PbNO₃
NaI
Iodide can react to Pb²⁺ to make a solid compound.
Answer:
8.10 hours.
Explanation:
You start with 500.0g.
After the first half-life, you have 250.0g.
After the second, you have 125.0g.
After the third, you have 62.50g.
Therefore, it takes three half-lives to decay to 62.50g.
Therefore, the elapsed time must be triple the length of one half-life.
24.3
3
=
8.10
, so it is 8.10 hours.
Explanation: