Answer:
A) s = 796.38 m
B) t = 12.742 s
C) T = 25.484 s
Explanation:
A) First of all let's find the time it takes to get to maximum height using Newton's first equation of motion.
v = u + gt
u = 125 m/s
v = 0 m/s
g = 9.81 m/s²
Thus;
0 = 125 - 9.81(t)
g is negative because motion is against gravity. Thus;
9.81t = 125
t = 125/9.81
t = 12.742 s
Max height will be gotten from Newton's 2nd equation of motion;
s = ut + ½gt²
s = (125 × 12.742) + (½ × -9.81 × 12.742²)
s = 1592.75 - 796.37
s = 796.38 m
B) time to reach maximum height is;
t = u/g
t = 125/9.81
t = 12.742 s
C) Total time elapsed is;
T = 2u/g
T = 2 × 125/9.81
T = 25.484 s
Explanation:
option A is the correct answer, if the gravitational acceleration is taken 10m/s²(rounding of 9.8/ms²).
hope this helps you.
Kinetic Energy = 1/2mv^2
m= 1200kg
v= 24 m/s
KE = 1/2 (1200kg)(24m/s)^2 = 345,600 N
Like . . . repel
unlike . . . attract
positive . . . repel
negative . . . repel