From the answers provided, I believe the possible answer would be the last option, silicon, oxygen, and one or more metals. Here's my reasoning: the most abundant mineral group found in the Earth's crust is the silicate group. The silicate materials contain both oxygen and silicon. Silicates are the most common minerals in the rock-formation process, and it has, in fact, been estimated that they make up 75 to 90 percent of the Earth's crust. From this piece of evidence, I can guess that the answer will possibly be D, silicon, oxygen, and one or more metals.
It should also be noted that the additional elements that combine with the silicon-oxygen tetrahedron are involved with the other elements commonly found in the Earth's crust and mantle. They are aluminum, calcium, iron, magnesium, potassium and sodium.
Answer:
Impedance = 93.75 ohms
Current = 1.81 A
Explanation:
Resistance = R = 80 ohms
Inductance = L = 0.2 H
Inductive reactance = XL =
= ωL = (2πf) L
= 2 (3.14) (60)(0.2) = 75.398 Ohms
Capacitive reactance = 1 / ωC = 1/(2πf)C = 1 / [(2π)(60)(0.1 × 10⁻3)]
= 26.526 Ohms
Impedance = Z =
=
= 93.747 ohms
Voltage =
× 120 = 169.7056 V
Current = I = V ÷ R = (169.7056) ÷ 93,747 = 1.81 A
Answer:
A permanent magnet creates a magnetic field at all points in the surrounding region.
An electric current in a conductor creates a magnetic field at all points in the surrounding region.
A moving electric charge creates a magnetic field at all points in the surrounding region.
Explanation:
Magnet field is a region around the magnet in which the magnetic force can be experienced. A magnet has two poles: North pole and South pole. A Magnetic field originates from north pole and ends at south pole.
Magnets are of two types: Permanent magnet and temporary magnet.
A moving charge produces magnetic field. A stationary charge can not produce a magnetic field.
The rate of flowing charge constitutes an electric current. If the cardboard is placed around the current carrying conductor and the iron fillings spread around the cardboard then the iron nails get stick to it. It means that a current carrying conductor creates a magnetic field around it.
Therefore, the true statements from the given statements are as follows;
A permanent magnet creates a magnetic field at all points in the surrounding region.
An electric current in a conductor creates a magnetic field at all points in the surrounding region.
A moving electric charge creates a magnetic field at all points in the surrounding region.
Answer:
it's B. circuit a and b are series circuit while c is parallel
The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass
kg, charge +e =
C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed
m/s. The proton comes momentarily to rest at a distance
m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are
m apart?
Explanation:
The given data is as follows.
Mass of proton =
kg
Charge of proton = 
Speed of proton = 
Distance traveled = 
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=

where, 
U = 
Putting the given values into the above formula as follows.
U = 
= 
= 
Therefore, we can conclude that the electric potential energy of the proton and nucleus is
.