Answer:
Molecularity of the rate determining step = 2
Explanation:
Step 1 (slow): H₂O₂ + I⁻ -----> H₂O + OI⁻
Step 2 (fast): H₂O₂ + OI⁻ -----> H₂O + O₂ + I⁻
The rate determining step in a reaction mechanism is also considered as slowest step.
Slowest step is also considered its highest activation energy in energy profile diagram.
In this case intermediate (IO⁻) is formed.
Step 1 considered as a slowest step.
So, Rate = K [H₂O₂][I⁻]
Molecularity = 2
To convert a mass of a substance to units of moles, we would need the molar mass of the substance since is it describes the mass of one mole of that substance. For CuCl2, the molar mass is 134.45 g/mol. For Al, the atomic mass is 26.98 g/mol.
2.50 g CuCl2 ( 1 mol / 134.45) = 0.019 mol CuCl2
0.25 g Al ( 1 mol / 26.98 g ) = 0.0093 mol Al
Answer:
1.23x10^-6 mole
Explanation:
A clear understanding of Avogadro's hypothesis proved that 1mole of any substance contains 6.02x10^23 atoms. This indicates that 1mole of Ag contains 6.02x10^23 atoms.
Now, 1f 1mole of Ag contains 6.02x10^23 atoms, then Xmol of Ag will contain 7.41x10^17 atoms i.e
Xmol of Ag = 7.41x10^17/6.02x10^23 = 1.23x10^-6 mole
Answer:
c. CH4 < NH3 because the NH bond is more polar than the CH bond.
Explanation:
Actually, the electronegativity difference between carbon and hydrogen is just about 0.4. This meager difference in electronegativity corresponds to a nonpolar bond between the two atoms.
However, the electronegativity difference between nitrogen and hydrogen is about 0.9. This larger electronegativity difference corresponds to the existence of a polar covalent bond between the two atoms.
Hence the N-H bond is significantly polar unlike the C-H bond. This implies that CH4 molecules are only held together by weak dispersion forces while NH3 molecules are held together by stronger dipole-dipole interactions and hydrogen bonds.