We can dictate the mechanism of the reaction by looking at the exponents of the reactants in the reaction rate equation. Since [xy] has an exponent of 1, then the reaction follows the first order reaction with respect to xy. Similarly, the reaction follows the first order with respect to z₂. Then, the overall is the sum of each of their orders which is 2.
In order to calculate the new freezing point, we must first find the depression. This is given by:
ΔT = Kf * b * i
where Kf is the cryscopic constant for the solvent, b is the molarity of the solution in moles per kilogram and i is the van't Hoff factor, which tells us how many ions will be released when a substance is dissolved.
Kf = 1.853, b = 1.5, i = 2 (Na⁺ and Cl⁻)
ΔT = 5.5 °C
The new freezing point will be 0 + 5.5
5.5 °C
<span>The Law of Conservation of Mass simply states
that the total amount of mass should not change in a chemical reaction that is
isolated (no other objects can enter the reaction). The total mass of the
reactants must be equal to the total mass of the products. Thus, t</span>he correct estimate of
the amount of oxygen used in the interaction is the difference between 133
g and 29 g.
Vertical now I need to fill 20 characters