My Physics teacher keeps giving us way too much work to do at home.
The kinetic energy gained by the air molecules is 0.0437 J
<h3 />
Given:
Mass of a coffee filter, m = 1.5 g
Height from which it is dropped, h = 3 m
Speed at ground, v = 0.7 m/s
Initially, the coffee filter has potential energy. It is given by :

P = 1.5 × 10⁻³ kg × 9.8 m/s² × 3m
P = 0.0441 J
Finally, it will have kinetic energy. It is given by :

×
× 10⁻³ × (0.7)²
E = 0.000343 J
The kinetic energy Kair did the air molecules gain from the falling coffee filter is :
E = 0.000343 - 0.0441
= 0.0437 J
So, the kinetic energy Kair did the air molecules gain from the falling coffee filter is 0.0437 J
Learn more about kinetic energy here:
brainly.com/question/8101588
#SPJ4
Answer:
The tank is losing

Explanation:
According to the Bernoulli’s equation:
We are being informed that both the tank and the hole is being exposed to air :
∴ P₁ = P₂
Also as the tank is voluminous ; we take the initial volume
≅ 0 ;
then
can be determined as:![\sqrt{[2g (h_1- h_2)]](https://tex.z-dn.net/?f=%5Csqrt%7B%5B2g%20%28h_1-%20h_2%29%5D)
h₁ = 5 + 15 = 20 m;
h₂ = 15 m
![v_2 = \sqrt{[2*9.81*(20 - 15)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%2820%20-%2015%29%5D)
![v_2 = \sqrt{[2*9.81*(5)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%285%29%5D)
as it leaves the hole at the base.
radius r = d/2 = 4/2 = 2.0 mm
(a) From the law of continuity; its equation can be expressed as:
J = 
J = πr²
J =
J =
b)
How fast is the water from the hole moving just as it reaches the ground?
In order to determine that; we use the relation of the velocity from the equation of motion which says:
v² = u² + 2gh
₂
v² = 9.9² + 2×9.81×15
v² = 392.31
The velocity of how fast the water from the hole is moving just as it reaches the ground is : 

Explanation:
The answer is:
A squirrel runs up the trunk of a tree.
I believe the answer should be D