1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
a_sh-v [17]
2 years ago
14

How much force is needed to accelerate at 66 kg skier 4m/s^2 ?​

Physics
1 answer:
Ray Of Light [21]2 years ago
7 0
E force needed to accelerate a 68 kilogram-skier at a rate of
1.2
m
s
2
is 81.6 Net forces.
Explanation:
Take the mass(68kg) and the acceleration of the skier(
1.2
m
s
2
) and multiply them together
You might be interested in
For most people, getting 8 to 9 hours of sleep increases concentration, improves physical health, and improves one's mood.
olga2289 [7]
That statement is true
8 0
3 years ago
Read 2 more answers
A radioactive material has a count rate of 400 per minute. It has a half life of 40 years. How long will it take to decay to a r
cestrela7 [59]

Answer:

160 years.

Explanation:

From the question given above, the following data were obtained:

Initial count rate (Cᵢ) = 400 count/min

Half-life (t½) = 40 years

Final count rate (Cբ) = 25 count/min

Time (t) =?

Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:

Initial count rate (Cᵢ) = 400 count/min

Final count rate (Cբ) = 25 count/min

Number of half-lives (n) =?

Cբ = 1/2ⁿ × Cᵢ

25 = 1/2ⁿ × 400

Cross multiply

25 × 2ⁿ = 400

Divide both side by 25

2ⁿ = 400/25

2ⁿ = 16

Express 16 in index form with 2 as the base

2ⁿ = 2⁴

n = 4

Thus, 4 half-lives has elapsed.

Finally, we shall determine the time taken for the radioactive material to decay to the rate of 25 counts per minute. This can be obtained as follow:

Half-life (t½) = 40 years

Number of half-lives (n) = 4

Time (t) =?

n = t / t½

4 = t / 40

Cross multiply

t = 4 × 40

t = 160 years.

Thus, it will take 160 years for the radioactive material to decay to the rate of 25 counts per minute.

7 0
2 years ago
A 1. 0 μf capacitor is being charged by a 9. 0 v battery through a 10 mω resistor.
Advocard [28]

The potential across the capacitor at t = 1.0 seconds, 5.0 seconds, 20.0 seconds respectively is mathematically given as

  • t=0.476v
  • t=1.967v
  • V2=4.323v

<h3>What is the potential across the capacitor?</h3>

Question Parameters:

A 1. 0 μf capacitor is being charged by a 9. 0 v battery through a 10 mω resistor.

at

  • t = 1.0 seconds
  • 5.0 seconds
  • 20.0 seconds.

Generally, the equation for the Voltage is mathematically given as

v(t)=Vmax=(i-e^{-t/t})

Therefore

For t=1

V=5(i-e^{-1/10})

t=0.476v

For t=5s

V2=5(i-e^{-5/10})

t=1.967

For t=20s

V2=5(i-e^{-20/10})

V2=4.323v

Therefore, the values of voltages at the various times are

  • t=0.476v
  • t=1.967v
  • V2=4.323v

Read more about  Voltage

brainly.com/question/14883923

Complete Question

A 1.0 μF capacitor is being charged by a 5.0 V battery through a 10 MΩ resistor.

Determine the potential across the capacitor when t = 1.0 seconds, 5.0 seconds, 20.0 seconds.

7 0
1 year ago
There is a 50 g sample of Ra-229. It has a half-life of 4 minutes.
Sloan [31]

Via half-life equation we have:


A_{final}=A_{initial}(\frac{1}{2})^{\frac{t}{h} }


Where the initial amount is 50 grams, half-life is 4 minutes, and time elapsed is 12 minutes.  By plugging those values in we get:

A_{final}=50(\frac{1}{2})^\frac{12}{4}=50(\frac{1}{2})^{3}=50(\frac{1}{8})=6.25g


There is 6.25 grams left of Ra-229 after 12 minutes.

4 0
3 years ago
In a certain chemical process, a lab technician supplies 292 J of heat to a system. At the same time, 68.0 J of work are done on
vekshin1

Answer:

The increase in the internal energy of the system is 360 Joules.

Explanation:

Given that,

Heat supplied to a system, Q = 292 J

Work done on the system by its surroundings, W = 68 J

We need to find the increase in the internal energy of the system. It can be given by first law of thermodynamics. It is given by :

dE=dQ+dW\\\\dE=292\ J+68\ J\\\\dE=360\ J

So, the increase in the internal energy of the system is 360 Joules. Hence, this is the required solution.

3 0
2 years ago
Other questions:
  • Two identical point charges are fixed to diagonally opposite corners of a square that is 0.510 m on a side. Each charge is 3.03
    11·1 answer
  • 4 meters and the frequency is 3 hz what’s the wave speed
    5·2 answers
  • How does the density of the Earth’s core compare to the other layers of the Earth?
    13·2 answers
  • Jayne lifts the barbell 120 cm upwards. She has a mass of 60kg. How much work does she do?
    7·1 answer
  • 4. Why is this a double replacement reaction?<br> HCl+Fes- FeCl+H2S
    13·1 answer
  • What are the orders of the lunar cycle?
    11·1 answer
  • An object is traveling with a constant velocity of 5 m/s. How far will it have gone after 7 s?
    7·1 answer
  • A man of weight Wman is standing on the second floor and is pulling on a rope to lift a box of weight Wbox from the floor below.
    11·1 answer
  • Describe the kinetic molecular theory
    5·1 answer
  • If a participant were holding two different weights in their hands and the jnd for a 10-gram weight was 1 gram, what should the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!