Gravity is pulling you down and friction is slowing you down so you don't plummet to the ground at super high speeds.
When an object falls or is dropped from rest it's initial velocity is zero.
Using the equations for a motion in straight line. I can find the time it takes to reach 3.0 m down (half way).
x = vt - 4.9t²
-3 = 0 - 4.9t²
-3/-4.9 = t²
0.6122 = t²
0.7825 sec = t
v = v - gt
v = 0 - 9.8(0.7825)
v = -7.67 m/s
the negative denotes downward direction.
You could also solve the problem using potential and kinetic energy.
Since it starts with maximum PE and gets converted to KE when it hits the ground. mgh = mv²/2
mass cancels, use 3 meters for the halfway distance
-9.8(-3) = v²/2
29.4 * 2 = v²
√(58.8) = 7.67 m/s downwards
Answer:
A) 12.57 m
B) 5 RPM
C) 3.142 m/s
Explanation:
A) Distance covered in 1 Revolution:
The formula that gives the relationship between the arc length or distance covered during circular motion to the angle subtended or the revolutions, is given as follows:
s = rθ
where,
s = distance covered = ?
r = radius of circle = 2 m
θ = Angle = 2π radians (For 1 complete Revolution)
Therefore,
s = (2 m)(2π radians)
<u>s = 12.57 m</u>
B) Angular Speed:
The formula for angular speed is given as:
ω = θ/t
where,
ω = angular speed = ?
θ = angular distance covered = 15 revolutions
t = time taken = 3 min
Therefore,
ω = 15 rev/3 min
<u>ω = 5 RPM</u>
C) Linear Speed:
The formula that gives the the linear speed of an object moving in a circular path is given as:
v = rω
where,
v = linear speed = ?
r = radius = 2 m
ω = Angular Speed in rad/s = (15 rev/min)(2π rad/1 rev)(1 min/60 s) = 1.571 rad/s
Therefore,
v = (2 m)(1.571 rad/s)
<u>v = 3.142 m/s</u>
Answer:
Neon (Ne), chemical element, inert gas of Group 18 (noble gases) of the periodic table, used in electric signs and fluorescent lamps. Colourless, odourless, tasteless, and lighter than air, neon gas occurs in minute quantities in Earth's atmosphere and trapped within the rocks of Earth's crust.
Explanation:
I am smart
Answer:
Most interstellar clouds are much bigger than our solar system.
Explanation:
An interstellar cloud refers:
- It is generally an accumulation of gas, plasma, and dust in our and other galaxies.
- It is basically a denser-than-average region of the interstellar medium (ISM).
Interstellar clouds can be large up to 106 solar masses
It is also often said to be the most massive entities in the galaxy.
Hence
we can say about Interstellar clouds,
They are much bigger than our solar system.
learn more about interstellar clouds here:
<u>brainly.com/question/14726563</u>
<u />
#SPJ4