Answer:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
Explanation:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol can be calculated using the following equation:
<u>Where:</u>
<em>μ (l): is the chemical potential of 2-propanol in solution </em>
<em>μ° (l): is the chemical potential of pure 2-propanol </em>
<em>R: is the gas constant = 8.314 J K⁻¹ mol⁻¹ </em>
<em>T: is the temperature = 82.3 °C = 355.3 K </em>
<em>x: is the mole fraction of 2-propanol = 0.41 </em>

Therefore, the chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
I hope it helps you!
Answer:
atom is the smallest unit of matter that has the characteristic properties of a chemical element.
<span>To solve this exercise you need to know that to create CO₂ with C₂H₂ is necessary to have oxygen. So, the following balanced equation represents the reaction:
2C₂H₂(g) + 5O₂(g) → 4CO₂(g) + 2H₂O(g)
Notice that 2 moles of C₂H₂ form 4 moles of </span><span>CO₂, so if </span>3.3 moles of C₂H₂ react, how many moles of CO2 would be produced?
2 moles <span>of C₂H₂ -------</span>4 moles of <span>CO₂
3.3 </span><span>moles <span>of C₂H₂--------x moles of CO₂
x=6.6 </span></span><span>moles of CO₂ produced.</span>
Alkaline Earth Metals are the elements located in the second period from the left of the periodic table. These elements lose two electrons to form the stable octet when forming an ionic bond, resulting in a net charge of +2. Because they’re trying to get rid of those electrons to get to the stable octet, it’s easy to remove them - this means that the ionization energy of these elements is relatively low. Finally, since they’re looking to get rid of electrons, they certainly aren’t trying to gain any, meaning that their electronegativity is relatively low.
The correct answers are A and D.
Answer:An increase in temperature commonly will increase the rate of reaction. An growth in temperature will improve the common kinetic electricity of the reactant molecules.
Explanation: