Answer: The answer to the first one is the second option and the answer for the second one is the first option.
Explanation:
<span>the balanced chemical equation for the reaction is as follows;
C</span>₃H₈ + 5O₂ ---> 3CO₂ + 4H₂<span>O
stoichiometry of </span> C₃H₈ to O₂ is 1:5
number of moles of C₃H₈ reacted - 0.025 g / 44.1 g/mol = 0.000567 mol according to molar ratio of 1:5
number of O₂ moles required are 5 times the amount of C₃H₈ moles reacted therefore number of O₂ moles required - 0.000567 x 5 = 0.00284 mol .
mass of O₂ required - 0.00284 mol x 32.00 g/mol = 0.091 mol .
answer is 0.091 mol
Answer:
1) SO₄
²⁻ : (+6)
H₂S : (-2)
Explanation:
a) <u>Sulfate reducers</u> are widespread in muds and other sediments, water-logged soils, etc., environments that contain SO₄ ²⁻ and become anoxic as a result of microbial decomposition.
Sulfate (SO₄ ²⁻), the most oxidized form of sulfur (+6), <u>is reduced</u> by these
sulfate-reducing bacteria. The end product of sulfate reduction is hydrogen sulfide, H₂S, (oxidation number -2) an important natural product that participates in many biogeochemical processes. The H₂S they generate is responsible for the pungent smell (like that of rotten eggs) often encountered near coastal ecosystems. When sulfate-reducing bacteria grow, the H₂S formed from SO₄ ²⁻ reduction combines with the ferrous iron to form black, insoluble ferrous sulfide, which is not toxic. This is important for the conservation of the environment.
b) The net ionic equation under acidic conditions is:
4 H₂ + SO₄²⁻ + H⁺ → HS⁻ + 4 H₂O
Global reaction: SO₄²⁻ + 2H⁺ → H₂S + O₂
the answer is thermal.......