1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harkovskaia [24]
3 years ago
8

If a true bearing of a ship at sea is 227°, what is its direction angle?

Physics
1 answer:
Ghella [55]3 years ago
4 0
I believe it’s B 313 degree
You might be interested in
The flywheel of a steam engine runs with a constant angular velocity of 150 rev/min. When steam is shut off, the friction of the
xz_007 [3.2K]

Answer:

a) -1.14 rev/min²

b) 9900 rev

c) -9.92×10⁻⁴ m/s²

d) 30.8 m/s²

Explanation:

First, convert hours to minutes:

2.2 h × 60 min/h = 132 min

a) Angular acceleration is change in angular velocity over change in time.

α = (ω − ω₀) / t

α = (0 rev/min − 150 rev/min) / 132 min

α = -1.14 rev/min²

b) θ = θ₀ + ω₀ t + ½ αt²

θ = 0 rev + (150 rev/min) (132 min) + ½ (-1.14 rev/min²) (132 min)²

θ = 9900 rev

c) The tangential component of linear acceleration is:

a_t = αr

First,  convert α from rev/min² to rad/s²:

-1.14 rev/min² × (2π rad/rev) × (1 min / 60 s)² = -1.98×10⁻³ rad/s²

Therefore:

a_t = (-1.98×10⁻³ rad/s²) (0.50 m)

a_t = -9.92×10⁻⁴ m/s²

d) The magnitude of the net linear acceleration can be found from the tangential component and the radial component:

a² = (a_t)² + (a_r)²

The radial component is the centripetal acceleration:

a_r = v² / r

a_r = ω² r

First, convert 75 rev/min to rad/s:

75 rev/min × (2π rad/rev) × (1 min / 60 s) = 7.85 rad/s

Find the radial component:

a_r = (7.85 rad/s)² (0.50 m)

a_r = 30.8 m/s²

Now find the net linear acceleration:

a² = (-9.92×10⁻⁴ m/s²² + (30.8 m/s²)²

a = 30.8 m/s²

5 0
3 years ago
A dry cell is better than simple cell​
777dan777 [17]

Answer:

umm this is not a question

Explanation:

7 0
2 years ago
baseball is hit into the air at an initial speed of 37.2 m/s and an angle of 49.3 ° above the horizontal. At the same time, the
Agata [3.3K]

Answer:

The average speed of the fielder is 5.24 m/s

Explanation:

The position vector of the ball after it was hit can be calculated using the following equation:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

Where:

r = position vector at time t.

x0 = initial horizontal position.

v0 = initial velocity.

t = time.

α = launching angle.

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

Please, see the attached figure for a graphical description of the problem.

When the ball is caught, its position vector will be (see r1 in the figure):

r1 = (r1x, 0.873 m)

Then, using the equation of the position vector written above:

r1x = x0 + v0 · t · cos α

0.873 m = y0 + v0 · t · sin α + 1/2 · g · t²

Since the frame of reference is located at the point where the ball was hit, x0 and y0 = 0. Then:

r1x = v0 · t · cos α

0.873 m = v0 · t · sin α + 1/2 · g · t²

Let´s use the equation of the y-component of r1 to obtain the time of flight of the ball:

0.873 m = 37.2 m/s · t · sin 49.3° - 1/2 · 9.8 m/s² · t²

0 = -0.873 m + 37.2 m/s · t · sin 49.3° - 4.9 m/s² · t²

Solving the quadratic equation:

t = 0.03 s and t = 5.72 s.

It would be impossible to catch the ball immediately after it is hit at t = 0.03 s. Besides, the problem says that the ball was caught on its way down. Then, the time of flight of the ball is 5.72 s.

With this time, we can calculate r1x which is the horizontal distance traveled by the ball from home:

r1x = v0 · t · cos α

r1x = 37.2 m/s · 5.72 s · cos 49.3°

r1x = 1.39 × 10² m

The distance traveled by the fielder is (1.39 × 10² m - 1.09 × 10² m) 30.0 m.

The average velocity is calculated as the traveled distance over time, then:

average velocity = treveled distance / elapsed time

average velocity = 30.0 m / 5.72 s = 5.24 m/s

8 0
3 years ago
Any child is pushing a shopping cart at a speed of 1.5 m/s.how long will it take this child to push the cart down the aisle with
NARA [144]
1.5 m/s is the velocity. 9.3 m is the length of aisle, over which Distance will be covered. Time is demanded in which the child will move the cart over the aisle with 1.5 m/s. v=S/t and, t=S/v Put values, t=9.3/1.5=6.2 s
7 0
2 years ago
How often is water added to the Earth system?
rosijanka [135]
<span>Water is never added to earth system. Water forever remains in the water cycle on earth, so it goes from the ground, to the air, to the rain, to the sea, and round and round continuously. This cycle means that there does not need to be new water added to the earth, because it recycles any water that already exists of its own accord.</span>
4 0
3 years ago
Other questions:
  • Given equal time periods, which statement is correct?
    13·2 answers
  • It takes 185 kj of work to accelerate a car from 23.0 m/s to 28.0 m/s. what is the car's mass?
    6·1 answer
  • What is true about the inertia of two cars, Car A of mass 1,500 kilograms and Car B of mass 2,000 kilograms
    11·2 answers
  • horizontal force pushes block up a 20.0 incline with an initial speed 12.0 m//s. a) how high up the plane does slide before comi
    14·1 answer
  • The speed of light is 3.0 x 108 m/s. How far does light travel in 2.4 minutes? Identify all variables, write a formula, show all
    13·1 answer
  • A beaker of ice and water is placed on a hot plate. is it a physical or chemical change
    11·1 answer
  • A crow drops .11 -kg clam onto a rocky beach from a height of 9.8 m. What is the kinetic energy of the clam when it is 5.0 m abo
    9·1 answer
  • Objects fall near the surface of the earth with a constant downward acceleration of 10 m/s2 . At a certain instant an object is
    11·1 answer
  • Explain two ways of magnetising an object​
    8·1 answer
  • Please help me and get 15 points and Brainlessly!!!!!!!
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!