Answer:
may have liability on the contracts he negotiates on behalf of the prospective corporation
Explanation:
<u>Answer:</u> The mass of potassium superoxide required is 142.2 grams
<u>Explanation:</u>
The chemical equation for the reaction of potassium superoxide with water follows:

Number of moles of potassium superoxide reacted = 2 moles for given amount of heat released
To calculate the mass for given number of moles, we use the equation:

Molar mass of potassium superoxide = 71.1 g/mol
Moles of potassium superoxide = 2 moles
Putting values in above equation, we get:

Hence, the mass of potassium superoxide required is 142.2 grams
Answer:
70%of 2000 = 1400
2000 tonnes of hematite contains 1400 tonnes iron oxide .
1400 tonnes of fe2O3
fe2O3 have molar mass 159.69
calculate moles = given mass/molar mass
moles = 1400000000/159.69
moles = 8766986
one mole contains = 112 g of fe
so 8766986 moles will contain = 112×8766986
= 981,902,432 grams of ferrous
which is nothing but equal to 981.90 tonnes of iron!!
Remember that in this case pressure is equal to 1.00 atm and temperature is equal to 273.15K. So,
P
V
=
n
R
T
→
n
=
P
V
R
T
=
1.00
a
t
m
⋅
7.0
L
0.082
a
t
m
⋅
L
m
o
l
⋅
K
⋅
273.15
K
=
0.31
Since we know hydrogen's molar mass (
2.0
g
m
o
l
), we can determine the mass
m
H
2
=
n
⋅
m
o
l
a
r
.
m
a
s
s
=
0.31
m
o
l
e
s
⋅
2.0
g
m
o
l
=
0.62
g
If indeed you are dealing with STP, remember that, under these conditions, 1 mole of any ideal gas occupies
22.4
L
. So,
n
=
V
V
m
o
l
a
r
=
7.0
L
22.4
L
=
0.31
moles
And, once again,
m
=
0.31
⋅
2.0
=
0.6