The final temperature in Celsius of the metal block is 49°C.
<h3>How to find the number of moles ?</h3>
Moles water = 
= 
= 0.0266 moles
Heat lost by water = 0.0266 mol x 44.0 kJ/mol
= 1.17 kJ
= 1170 J [1 kJ = 1000 J]
Heat lost = Heat gained
Heat gained by aluminum = 1170 J
1170 = 55 x 0.903 (T - 25) = 49.7 T - 1242
1170 + 1242 = 49.7 T
T = 48.5°C (49°C at two significant figures)
Thus from the above conclusion we can say that The final temperature in Celsius of the metal block is 49°C.
Learn more about the Moles here: brainly.com/question/15356425
#SPJ1
Answer:
Law of conservation of mass
Ernest Rutherford
Explanation:
The basic law of behavior of matter that states that "mass is neither created nor destroyed in a chemical reaction or physical change".
This is the law of conservation of mass. It is very essential in understanding most chemical reaction. Also, in quantitative analysis, this law is pivotal.
Ernest Rutherford was the scientist that stated that the nucleus is made up of positive charge. It was not until James Chadwick in 1932 discovered the neutron that we had an understanding of this nuclear component.
Rutherford surmised from his experiment that because most the alpha particles passed through the thin Gold foil and just a tiny fraction was deflected back, the atom is made is made up of small nucleus that is positively charged.
Answer:
A
Explanation:
If the Picture is a Desert showing reptiles like lizards and has cacti then it would be Dry and Sandy
Answer:
87.15%
Explanation:
To find percent yield, we can use this simple equation

Where "Actual" is the amount in grams actually collected from the reaction, and "Theoretical" is, well, the theoretical amount that should have been produced.
They give us these values, so to find the percent yield, just plug the numbers in.

So, the percent yield is 87.15%
An easy trick to remember how to do this is just to divide the smaller number by the bigger number and move the decimal back two places. If you have a percent yield greater than 100%, something is wrong in the reaction.