Explanation:
Given that,
Initial speed of the rock, u = 30 m/s
The acceleration due to gravity at the surface of the moon is 1.62 m/s².
We need to find the time when the rock is ascending at a height of 180 m.
The rock is projected from the surface of the moon. The equation of motion in this case is given by :

It is a quadratic equation, after solving whose solution is given by:
t = 7.53 s
or
t = 8 seconds
(e)If it is decending, v = -20 m/s
Now t' is the time of descending. So,

Let h' is the height of the rock at this time. So,

or
h' = 155 m
Answer: Yes.
Explanation:
Oxygen has a bond order of two. The bond order of Oxygen molecule is calculated, where the [<em>eight valence electrons in bonding molecular orbitals</em> minus (-) <em>four valence electrons in antibonding molecular orbitals</em>]/2 in the electron configuration.
Atoms/molecules where electrons are paired are diamagnetic (repelled by both poles of a magnetic); while atoms/molecules that have one or more unpaired electrons are paramagnetic (attracted to magnetic field).
The two unpaired electrons of dioxygen molecules has made it <u>paramagnetic</u>. By pouring liquid oxygen between the poles of a strong magnet, the liquid stream will be contained by the filed and fills up the space between the poles.
Here, you can derive that by numerical method, as follows:
F = m.a
m = F/a
So, here we can see when we decrease one, other increase by same effect; we can say they are "Indirectly Proportional" to each other!
Hope this helps!
Explanation:
radio waves, which include visible light waves.
Complete Question
The complete question is shown on the first uploaded image
Answer:
a it is always zero
b 0
c 
Explanation:ss
Here the net charge is on the outer surface of the conductor thus this means that the net charge inside the conductor is zero
Generally the charge density of a conductor is dependent on the charge per unit area which implies that the charge density is dependent on the net charge so this means that the charge density inside the conductor is zero
Generally the direction of electric field this from the positive charge to the negative charge so from the question we can deduce that the negative charge is located on the surface of the conductor
So We can mathematically define the charge density on the surface of the electric field as
∮
Where E is the electric field
change in unit area
is the negative charge
is the permittivity of free space
So



Where
is the charge density