Explanation :
As we know that the Gibbs free energy is not only function of temperature and pressure but also amount of each substance in the system.

where,
is the amount of component 1 and 2 in the system.
Partial molar Gibbs free energy : The partial derivative of Gibbs free energy with respect to amount of component (i) of a mixture when other variable
are kept constant are known as partial molar Gibbs free energy of
component.
For a substance in a mixture, the chemical potential
is defined as the partial molar Gibbs free energy.
The expression will be:

where,
T = temperature
P = pressure
is the amount of component 'i' and 'j' in the system.
I think the answer is B. But I am not sure
Density of a solution is mass of solution per unit volume
Density = mass/volume
mass of solution is 46.08 g
volume of solution is 58.9 mL
since mass and volume is known, density can be calculated
density = 46.08 g / 58.9 mL = 0.78 g/mL
Answer:
6.05g
Explanation:
The reaction is given as;
Ethane + oxygen --> Carbon dioxide + water
2C2H6 + 7O2 --> 4CO2 + 6H2O
From the reaction above;
2 mol of ethane reacts with 7 mol of oxygen.
To proceed, we have to obtain the limiting reagent,
2,71g of ethane;
Number of moles = Mass / molar mass = 2.71 / 30 = 0.0903 mol
3.8g of oxygen;
Number of moles = Mass / molar mass = 3.8 / 16 = 0.2375 mol
If 0.0903 moles of ethane was used, it would require;
2 = 7
0.0903 = x
x = 0.31605 mol of oxygen needed
This means that oxygen is our limiting reagent.
From the reaction,
7 mol of oxygen yields 4 mol of carbon dioxide
0.2375 yields x?
7 = 4
0.2375 = x
x = 0.1357
Mass = Number of moles * Molar mass = 0.1357 * 44 = 6.05g