Given:
The mass of the halfback is m = 107 kg
The speed of the halfback is v = 8 m/s
To find the momentum.
Explanation:
The momentum of the halfback is

Thus, the momentum of the halfback is 856 kg m/s
Explanation:
Below is an attachment containing the solution.
Answer:
The tension in the cord is 
Explanation:
Given:
M = mass
b = radius
R = spool of radius
The equation is:
(eq. 1)
The sum of forces in y:
∑Fy = Mg - T = Ma

Replacing in eq. 1

The formula for the energy in a capacitor , u in terms of q and c is q²/2c
<h3>What is the energy of a capacitor?</h3>
The energy of a capacitor u = 1/2qv where
- q = charge on capacitor and
- v = voltage across capacitor.
<h3>What is the capacitance of a capacitor?</h3>
Also, the capacitance of a capacitor c = q/v where
- q = charge on capacitor and
- v = voltage across capacitor.
So, v = q/c
<h3>
The formula for energy of the capacitor in terms of q and c</h3>
Substituting v into u, we have
u = 1/2qv
= 1/2q(q/c)
= q²/2c
So, the formula for the energy in a capacitor , u in terms of q and c is q²/2c
Learn more about energy in a capacitor here:
brainly.com/question/10705986
#SPJ12
Answer:
T = 712.9 N
Explanation:
First, we will find the speed of the wave:
v = fλ
where,
v = speed of the wave = ?
f = frequency = 890 Hz
λ = wavelength = 0.1 m
Therefore,
v = (890 Hz)(0.1 m)
v = 89 m/s
Now, we will find the linear mass density of the wire:

where,
μ = linear mass density of wie = ?
m = mass of wire = 90 g = 0.09 kg
L = length of wire = 1 m
Therefore,

μ = 0.09 kg/m
Now, the tension in wire (T) will be:
T = μv² = (0.09 kg/m)(89 m/s)²
<u>T = 712.9 N</u>