Answer:
Explanation:
To find the amplitude of the sound, we must first determine the wavelength and the phase difference between the two speakers.
For the wavelength;
Recall that, the separation between two successive max. and min. intensity points are 
Thus; for both speakers; the wavelength of the sound is:


λ = 80 cm
The relation between the path difference(Δx) and the phase difference(Δ∅) is:

where;
Δx = 10 cm
λ = 80 cm
Δ∅ = π rad
∴







Suppose both speakers are placed side-by-side, then the path difference between the two speakers is: Δx = 0 cm
Thus, we have:



∴
The amplitude of the sound wave if the two speakers are placed side-by-side is:



A = 0.765a
Due to its polarity and hydrogen bonding water can absorb heat without a significant temperature change.. The high specific heat of water helps regulate the rate at which air changes temperature, which is why the temperature change between seasons is gradual instead of sudden, especially near the oceans.
The experiments that claimed to demonstrate cold fusion were found
to have been faulty by others who reviewed them. Also, nobody else
was
able to reproduce the finding in other laboratories. In the world
of
Science, this pretty much says that the initial claims were unfounded.
Answer:
low
Explanation:
the higher the kinetic energy, the More the vibration of molecules, thus heat is more on the side with highly vibrating molecules
The final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.
The given parameters;
- Mass of the first astronaut, = m₁
- Mass of the second astronaut, = m₂
- Initial velocity of the first astronaut, = v₁
- Initial velocity of the second astronaut, = v₂ > v₁
- Mass of the ball, = m
- Speed of the ball, = u
- Final velocity of the first astronaut, =

- Final velocity of the second astronaut, =

The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.

if v₂ > v₁, then
, to conserve the linear momentum.
Thus, the final velocity (
) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (
) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.
Learn more here: brainly.com/question/24424291