Answer:
Z=22.70
Explanation:
It is given that,
An element Z that has two naturally occurring isotopes with the following percent abundances as follows :
The isotope with a mass number 22 is 65.0% abundant; the isotope with a mass number 24 is 35.0% abundant.
The average atomic mass for element Z is given by :

So, the average atomic mass for element Z is 22.70.
No. bacteria only needs food to live along with other special needs depending on the type of bacteria
4.22 grams.
1. First find out how much AgNO3 weighs with one mole (107.87 g Ag + 14.007 g N + 48 g O = 169.89 grams)
2. Find the percent of Ag you have. So, (107.87 g/mol Ag)/(169.89 g/mol AgNO3)= 0.63 * 100 = 63%.
3. If you have 6.7 grams total, you know 63% of it is going to be silver, so just multiply 6.7 grams by .63 and you get 4.22 g Ag
.5336
using avogadro’s law
Answer:
a. 1.23 V
b. No maximum
Explanation:
Required:
a. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have?
b. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have?
The standard cell potential (E°cell) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E°cell = E°red, cat - E°red, an
If E°cell must be at least 1.10 V (E°cell > 1.10 V),
E°red, cat - E°red, an > 1.10 V
E°red, cat - 0.13V > 1.10 V
E°red, cat > 1.23 V
The minimum standard reduction potential is 1.23 V while there is no maximum standard reduction potential.