<h3>
Answer: 104.5 cubic cm</h3>
=======================================================
Work Shown:
r = radius = 1.045 cm
h = height = 30.48 cm
pi = 3.141 approximately
V = volume of cylinder
V = pi*r^2*h
V = 3.141*(1.045)^2*30.48
V = 104.547940002
V = 104.5 cubic cm
Answer:
ответ семь
Explanation:
Добавить eght то девять и да
Answer:
30m/s^2
Explanation:
Acceleration=Final Velocity-Initial Velocity/Time
10m/s^2= Final Velocity-0m/s/3
30m/s^2= Final Velocity
Final Velocity=30m/s^2
Kinetic energy = (1/2) (mass) (speed)²
Before slowing down, the car's speed is 25 m/s,
and its kinetic energy is ...
(1/2) (1,500 kg) (25 m/s)²
= (1/2) (1,500 kg) (625 m²/s²)
= 468,750 joules .
After slowing down, the car's speed is 15 m/s,
and its kinetic energy is ...
(1/2) (1,500 kg) (15 m/s)²
= (1/2) (1,500 kg) (225 m²/s²)
= 168,750 joules.
The car lost (468,750 - 168,750) = 300,000 joules of K.E.
The law of Conservation of Energy says:
That 300,000 joules had to go somewhere.
If it's a standard, gas-powered car, then the kinetic energy got
put into the brakes. The energy turned into heat, and the heat
was carried off in the air.
If it's a more modern electric or hybrid car, then the kinetic energy
spun the wheel motors, turning them temporarily into electrical
generators. The generators converted the kinetic energy into
electrical energy, which got put back into the car's batteries, and
could be used again. That's why electric cars use less gas.
This is the answer for ur question