Answer:
took longer to complete one oscillation, that means its PERIOD increased, and the distance between the peaks of the graph would be longer.
line would be less. the period of oscillation would have any effect on the graph
Answer:
A)
= 1.44 kg m², B) moment of inertia must increase
Explanation:
The moment of inertia is defined by
I = ∫ r² dm
For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is
I = ½ m R²
A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is
I =
+ m D²
Let's apply these equations to our case
The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms
=
+ 2
= ½ M R²
The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body
M = 7/8 m total
M = 7/8 64
M = 56 kg
The mass of the arms is
m’= 1/8 m total
m’= 1/8 64
m’= 8 kg
As it has two arms the mass of each arm is half
m = ½ m ’
m = 4 kg
The arms are very thin, we will approximate them as a particle
= M D²
Let's write the equation
= ½ M R² + 2 (m D²)
Let's calculate
= ½ 56 0.20² + 2 4 0.20²
= 1.12 + 0.32
= 1.44 kg m²
b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase
Answer:
$ 0.48
Explanation:
We can calculate this quantity easily using successive products and taking into account the units.
![\frac{0.08}{kw*h}*2[kw]*3[hr]\\ \\=0.48](https://tex.z-dn.net/?f=%5Cfrac%7B0.08%7D%7Bkw%2Ah%7D%2A2%5Bkw%5D%2A3%5Bhr%5D%5C%5C%20%5C%5C%3D0.48)
The amount is $ 0.48
The given mass is 0.025563 g.
Examine the given choices.
a. 0.026 g
This uses 2 significant digits, with rounding to the 3rd decimal place.
b. 2.5 x 10² g = 250 g.
It is incorrect.
c. 0.025 g.
This uses 2 significant digits. It is inaccurate because it does not use rounding to the 3rd decimal place.
d. 0.02 g
This uses one significant digit. It is incorrect for representing the given data.
Answer: a. 0.026 g
Answer:to relate the size of the box to the temperature of air within the box
Explanation: