Answer:
(a) ΔP=0.0245 kPa
(b) P=9.14 kPa
(c)ΔP=0.0245 kPa
Explanation:
(a) As it is perfect gas we can use
(P₁V₁)/T₁=(P₂V₂)/T₂
Since this constant volume so
P₁/T₁=P₂/T₂
T₂ is change in temperature
T₂=1.00+273.16
T₂=274.16 K

ΔP=6.71449-6.69
ΔP=0.0245 kPa
(b) As

(c) Same steps as in part (a)

ΔP=9.164-9.14
ΔP=0.0245kPa
I think it's 45 miles. Don't know for sure though
This would be a cold front that forms when a warm air mass meets the area of a cooler air mass, although it should be noted that this doesn't always feel "cold".
To solve this exercise it is necessary to take into account the concepts related to Tensile Strength and Shear Strenght.
In Materials Mechanics, generally the bodies under certain loads are subject to both Tensile and shear strenghts.
By definition we know that the tensile strength is defined as

Where,
Tensile strength
F = Tensile Force
A = Cross-sectional Area
In the other hand we have that the shear strength is defined as

where,
Shear strength
Shear Force
Parallel Area
PART A) Replacing with our values in the equation of tensile strenght, then

Resolving for F,

PART B) We need here to apply the shear strength equation, then



In such a way that the material is more resistant to tensile strength than shear force.
Answer:
yes i relate mass but not acceleration