Answer:
A) energy loss E = pgQtH
Where p = density in kg/m3
g = gravity acceleration in m/s2
Q = flow rate in m3/s
t = time taken for flow in sec
H = height of flow in m
B) power required to run pump;
P = pgQH
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
Under no circumstances
Explanation:
I'm not 100% sure why, but I remember hearing that you're not suposed to go over the speed limit no matter what
Answer:
d= 4.079m ≈ 4.1m
Explanation:
calculate the shaft diameter from the torque, \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}
Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).
r = Radius of the shaft.
T = Twisting Moment or Torque.
J = Polar moment of inertia.
C = Modulus of rigidity for the shaft material.
l = Length of the shaft.
θ = Angle of twist in radians on a length.
Maximum Torque, ζ= τ × \frac{ π}{16} × d³
τ= 60 MPa
ζ= 800 N·m
800 = 60 × \frac{ π}{16} × d³
800= 11.78 × d³
d³= 800 ÷ 11.78
d³= 67.9
d= \sqrt[3]{} 67.9
d= 4.079m ≈ 4.1m
Answer:
thanks thanks thanks thanks
Explanation: