Explanation:
1. Height Relatives to reference point, Mass, and strength of the gravitational field it's in
2. Distance in the magnetic field
Please ignore my comment -- mass is not needed, here is how to solve it. pls do the math
at bottom box has only kinetic energy
ke = (1/2)mv^2
v = initial velocity
moving up until rest work done = Fs
F = kinetic fiction force = uN = umg x cos(a)
s = distance travel = h/sin(a)
h = height at top
a = slope angle
u = kinetic fiction
work = Fs = umgh x cot(a)
ke = work (use all ke to do work)
(1/2)mv^2 = umgh x cot(a)
u = (1/2)v^2 x tan (a) / gh
The feel of weight comes due to the normal reaction force given by the support. Hence, the condition of weightlessness is when the normal reaction force becomes zero. So, during free fall there is no support which can provide the normal reaction. Hence, the bungee jumper feels weightless as she falls towards the earth because of the lack of support force that balances gravity.
Hence, the answer is 3.
Answer: 0.076 m/s
Explanation:
Momentum is conserved:
m v = (m + M) V
(0.111 kg) (55 m/s) = (0.111 kg + 80. kg) V
V = 0.076 m/s
After catching the puck, the goalie slides at 0.076 m/s.