<span>
adapt to a changing environment
</span><span>organisms that possess heritable traits that enable them to better adapt to their environment </span>
Picture #1:
GPE = (mass) x (gravity) x (height)
GPE = (2 kg) x (9.8 m/s²) x (40 m) = 784 joules
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (5 m/s)²
KE = (1 kg) (25 m²/s²) = 25 joules
Picture #2:
KE = (1/2) (mass) (speed²)
KE = (1/2) (2 kg) (10 m/s)²
KE = (1 kg) (100 m²/s²) = 100 joules
Picture #3:
GPE = (mass) x (gravity) x (height)
GPE = (20 kg) x (9.8 m/s²) x (2 m) = 392 joules
KE = (1/2) (mass) (speed²)
KE = (1/2) (20 kg) (5 m/s)²
KE = (10 kg) (25 m²/s²) = 250 joules
Picture #4:
GPE = (mass) x (gravity) x (height)
98 joules = (1 kg) x (9.8 m/s²) x (height)
Height = (98 joules) / (1 kg x 9.8 m/s²)
Height = 10 meters
Picture #5:
GPE = (mass) x (gravity) x (height)
39,200 Joules = (mass) x (9.8 m/s²) x (20 m)
Mass = (39,200 joules) / (9.8 m/s² x 20 m)
Mass = 200 kg
At Korona100 I don’t think it’s 10, becz I remember having this question on my test/ quiz but I got it incorrect so yeah.
Answer:
1. Since the carpet is softer than the concrete and the force of impact is reduced by the extended time of impact.
Explanation.
The carpet provides energy dissipation over a porous layer of material.
Because of this, the carpet behaves as if it was a spring and a dashpot.
The spring absorbs the kinetic energy, and the dashpot dissipates the energy.
The ticker the carpet, the better the energy dissipation will be.