Since
Electric potential energy = qV
Where V = Ed
Hence
Electric potential energy = q(Ed) --- (1)
Since E = 1.0 * 10^3 N/C
d = 0.10 m
q = 4 * 10^-6 C
Plug in the values in (1)
(1) => Electric potential energy = 4 * 10^-6(1.0 * 10^3 * 0.10)
Electric potential energy = 400 μJ
In transistor,
Emitter current is equal to the sum of base current and collector current.
Thanks!
<u>Answer:</u>
Work input = Work output * Work against friction is your answer so C
<u>Explanation:</u>
I hope this helps you :)
Answer:
1.43 s
Explanation:
The time it takes for the container to reach the ground is determined only by the vertical motion of the container, which is a free-fall motion, so a uniformly accelerated motion with a constant acceleration of g=9.8 m/s^2 towards the ground.
The vertical distance covered by an object in free fall is given by

where
u = 0 is the initial vertical speed
t is the time
a= g = 9.8 m/s^2 is the acceleration
since u=0, it can be rewritten as

And substituting S=10.0 m, we can solve for t, to find the duration of the fall:
