A particle has centripetal acceleration whenever it's a making a turn of radius R. If the particle is moving at a constant tangential speed v throughout the turn, then the magnitude of centripetal acceleration is
v²/R
If the particle is following a uniformly circular path, then it moves in a circle of radius R and travels a distance equal to its circumference, 2πR. Let T be the time it takes to complete one such loop. Then the entire circle is traversed with speed v = 2πR/T, so that the centripetal acceleration is also given by
v²/R = (2πR/T)²/R = 4π²R/T²
I think the correct answer from the choices listed above is the third option . Measuring the density of a substance <span>is most likely to produce the most precise results when trying to identify a substance since it can be compared to water and there are many data on it on books.</span>
Answer:
Explanation:
Hydrogen and hydroxide ions reacts to form water in a neutralisation reaction
Answer:
a) 4500 cycles b) 0.0667s c) 6.67s
Explanation:
a) 15 Hz= 15 cycles/ s
5 mins= 300s
15 cycles/s * 300s= 4500 cycles
b) Period= 1/ frequency
Period= 1/ 15 cycles/s
Period= 0.0667s
c) Period * number of revolutions= time
0.0667 * 100= 6.67s
Answer:
Final velocity = 16 m/s
Total distane travelled = 390 m
Explanation:
We can use equation of motion to solve this:

