Answer:
Regional metamorphic rocks form from other rocks (protoliths) by changes in mineralogy and texture in response to changing physical conditions (temperature, lithostatic pressure, and, in most cases, shear stress). Regional metamorphism occurs over broad areas in the lithosphere, possibly influenced by the heat supply. Regional metamorphic rock results from regional metamorphism and usually develops a flaky texture. These changes are essentially solid-state reactions, but very often a fluid phase is present, either participating in the reaction or as a reaction medium. Many regional metamorphic rocks have a chemical composition that is very similar to that of their sedimentary or igneous precursors, with the exception of removal or addition of volatiles (mainly H2O and CO2). This type of behavior is termed isochemical metamorphism. Metamorphism may also take place as a result of a change in chemical environment; this may occur by transport of elements between chemically contrasting rock types (e.g., formation of calc-silicate minerals at a quartzite–marble contact) or by circulation of fluids that dissolve some substances and precipitate others. This process of significant chemical change during metamorphism is known as allo-chemical metamorphism or metasomatism, and rocks formed in this manner are metasomatic rocks. Metasomatism is, however, mostly of local significance, and the total volume of metasomatic rocks in regional metamorphic terranes is rather minor. The distinction between metasomatism and is chemical metamorphism is also a matter of scale. On the scale of individual grains, mass transport takes place during all phase transformations; on the scale of a thin section, it is probably the rule for regional metamorphism; on the scale of a hand (sized) specimen, it can be observed frequently; and on a larger scale, it is the exception.
Hope this Helps!
Color, the other answers arent changing the substance into something different
(23.1 + 5.61 + 1.008) × 7.6134 × 8.431
= 29.718 × 7.6134 × 8.431
=1907.55608
The equation is solved in the manner that the term in the bracket is added first then mutiplication is done as according to Bodmas rule, if an equation contains brackets that need to be solved first then other operation that is division,multiplication, addition and subtraction are performed from left to right .
Answer:
1) increase concentration
2) decrease the amount
3) decrease the concentration
4) it would increase
Explanation: edge 2021
Explanation:
The given data is as follows.
= 286 kJ = 
= 286000 J
,

Hence, formula to calculate entropy change of the reaction is as follows.

= ![[(\frac{1}{2} \times S_{O_{2}}) - (1 \times S_{H_{2}})] - [1 \times S_{H_{2}O}]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20S_%7BO_%7B2%7D%7D%29%20-%20%281%20%5Ctimes%20S_%7BH_%7B2%7D%7D%29%5D%20-%20%5B1%20%5Ctimes%20S_%7BH_%7B2%7DO%7D%5D)
= ![[(\frac{1}{2} \times 205) + (1 \times 131)] - [(1 \times 70)]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20205%29%20%2B%20%281%20%5Ctimes%20131%29%5D%20-%20%5B%281%20%5Ctimes%2070%29%5D)
= 163.5 J/K
Therefore, formula to calculate electric work energy required is as follows.
= 
= 237.277 kJ
Thus, we can conclude that the electrical work required for given situation is 237.277 kJ.