Answer:
4.993 ×10⁻¹¹ J
Explanation:
The <em>nuclear binding energy</em> is the energy equivalent to the mass defect.
The <em>mass defect</em> is the difference between the mass of a nucleus and the sum of the masses of its nucleons.
<em>Calculate the mass defect
</em>
16 p = 16 × 1.007 28 u = 16.116 48 u
16 n = 16 × 1.008 67 u = 16.138 72 u
Total mass of nucleons = 32.255 20 u
- Mass of S-32 = <u>31.972 070 u
</u>
Mass defect = 0.283 13 u
Convert the <em>unified atomic mass units to kilograms</em>.
Mass defect


Use Einstein’s equation to <em>convert the mass defect into energy</em>


Answer:
<h3><em>to Separate camphor from sand we use <u>sublimation</u> process.</em></h3><h3 /><h3 /><h3><em>Hope </em><em>it</em><em> </em><em>is </em><em>helpful</em><em> to</em><em> you</em><em> </em></h3>
Answer:
Color.
Explanation:
Hello,
In this case, since matter has a lot of properties regarding its physical condition and chemical composition, those related to the appearance of matter are physical. In such a way, since the student observed to different substances with also different colors, we can infer that the property of matter that was observed in the scenario was color, which accounts for the graphical perception we have from them.
Best regards.
Explanation:
A point of temperature at which both solid and liquid state of a substance remains in equilibrium without any change in temperature then this temperature is known as melting point.
For example, melting point of water is
. So, at this temperature solid state of water and liquid state are present in equilibrium with each other.
Therefore, when a 100 g of given pure metal in solid state is heated at its exact melting point which is
then some of the solid will change into liquid state but the temperature will remains the same.
Answer : The entropy change for the surroundings of the reaction is, -198.3 J/K
Explanation :
We have to calculate the entropy change of reaction
.

![\Delta S^o=[n_{NH_3}\times \Delta S^0_{(NH_3)}]-[n_{N_2}\times \Delta S^0_{(N_2)}+n_{H_2}\times \Delta S^0_{(H_2)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5Bn_%7BNH_3%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28NH_3%29%7D%5D-%5Bn_%7BN_2%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28N_2%29%7D%2Bn_%7BH_2%7D%5Ctimes%20%5CDelta%20S%5E0_%7B%28H_2%29%7D%5D)
where,
= entropy of reaction = ?
n = number of moles
= standard entropy of 
= standard entropy of 
= standard entropy of 
Now put all the given values in this expression, we get:
![\Delta S^o=[2mole\times (192.5J/K.mole)]-[1mole\times (191.5J/K.mole)+3mole\times (130.6J/K.mole)]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo%3D%5B2mole%5Ctimes%20%28192.5J%2FK.mole%29%5D-%5B1mole%5Ctimes%20%28191.5J%2FK.mole%29%2B3mole%5Ctimes%20%28130.6J%2FK.mole%29%5D)

Therefore, the entropy change for the surroundings of the reaction is, -198.3 J/K