Answer:
approximately 15.1 grams.
Explanation:
The key to chemistry is to change everything to moles. Then when you have the answer in moles change the answer back to grams, liters, or whatever you want.
change 25 grams of potassium chlorate to moles.
calculate the gram molecular mass of potassium chlorate.
Chlorate is Cl with 3 oxygens. ate = saturated. Chlorine has seven valance electrons when it is saturated six of these electrons are used by oxygen ( 2 electrons per oxygen) leaving only 1 electron.
1 K x 39 grams/mole
+1 Cl x 35.4 grams/ mole
+3 O x 16 grams/ mole
= 122.4 grams / mole Potassium Chlorate
25
122.4
= moles.
2.05 moles of Potassium Chlorate.
There is a 1:1 mole ratio. 1 mole of Potassium Chlorate will produce 1 mole of Potassium Chloride.
2.05 moles of Potassium Chlorate will produce 2.05 moles of Potassium Chloride.
Find the gram molecular mass of Potassium Chloride.
1 K x 39 = 39
+1 Cl x 35.4 = 35.4
= 74.4 grams / mole.
2.05 moles x 74.4 grams/ mole = 15.2 grams
First, we write the reaction equation:
2KI + PbNO₃ → K₂NO₃ + PbI₂
The molar ratio of KI to PbNO₃ is 2 : 1
Moles of PbNO₃ present:
Moles = concentration (M) x volume (dm³)
= 0.194 x 0.195
= 0.038
Moles of KI required = 2 x 0.038 = 0.076 moles
concentration = moles / volume
volume = moles / concentration
= 0.076 / 0.2
= 0.38 L = 380 ml
Answer:
c
Explanation:
How many moles of gold are equivalent to 1.204 × 1024 atoms?
0.2
0.5
2
5
C) 2 Is the correct answer, I took the test and it was correct.
Answer: 2 molecules of ammonia
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for the formation of ammonia is:

According to stoichiometry,
3 molecules of hydrogen combines with 1 molecule of nitrogen to give 2 molecules of ammonia.
Answer:Rate of reaction can be determined in terms of concentration of reactants consumed or concentration of product formed per unit time
Explanation: For the reaction below
A ===>B
The reactant is A while the product given is B.
Reaction rate = Δ[B]/Δt = -Δ[A]/Δt
The concentration of A will decrease with time while the concentration of B will increases with time.
The negative sign in -Δ[A]/Δt is to convert the expression to positive since the change will always be negative (decreases)