Well Thermal energy is an example of kinetic energy, as it is due to the motion of particles, with motion being the key. Thermal energy results in an object or a system having a temperature that can be measured. Thermal energy can be transferred from one object or system to another in the form of heat. While <span>Heat energy (or thermal energy or simply heat) is defined as a form of energy which transfers among particles in a substance (or system) by means of kinetic energy of those particles. In other words, under kinetic theory, the heat is transferred by particles bouncing into each other.</span>
Answer:

Explanation:
From the question we are told that:
Distance of wall from CD 
Second bright fringe 
Let
Strontium vapor laser has a wavelength \lambda= 431 nm=>431 *10^{-9}m
Generally the equation for Interference is mathematically given by

Where



Answer:
0.911 atm
Explanation:
In this problem, there is no change in volume of the gas, since the container is sealed.
Therefore, we can apply Gay-Lussac's law, which states that:
"For a fixed mass of an ideal gas kept at constant volume, the pressure of the gas is proportional to its absolute temperature"
Mathematically:

where
p is the gas pressure
T is the absolute temperature
For a gas undergoing a transformation, the law can be rewritten as:

where in this problem:
is the initial pressure of the gas
is the initial absolute temperature of the gas
is the final temperature of the gas
Solving for p2, we find the final pressure of the gas:

Answer:
the net force applied to the car is zero.
Explanation:
According to Newton's second law, the acceleration of an object (a) is directly proportional to the net force applied (F):

where m is the object's mass.
In this problem, the car is moving with constant velocity: this means that the acceleration is zero, a = 0. Therefore, according to the previous equation, the net force must also be zero: F = 0. So, the correct answer is
the net force applied to the car is zero.