Scientific would be the word to fill in the blank
Answer:
C. 0.20 M Mg ion & 0.40 M Cl ion
Explanation:
MgCl₂ is a ionic salt which is dissociated as this
MgCl₂ → Mg²⁺ + 2Cl⁻
First of all, we have a solution of 200 mL, with [MgCl₂] = 0.6M
Molarity . volume = moles.
0.6 mol/l . 0.2l = 0.12 mol
MgCl₂ → Mg²⁺ + 2Cl⁻
0.12mol 0.12 0.24
This moles are also in 400mL of water, so the new concentration is
[Mg²⁺] = 0.12 m/0.6L = 0.2M
[Cl⁻] = 0.24 m/0.6L = 0.4M
Remember we initially have 200mL and then, we add 400 mL, so we supose aditive volume. (600mL)
Missing question:
A. [3.40 mol Fe2O3 (s) × 26.3 kJ/1 mol Fe2O3 (s)] / 2
<span>B. 3.40 mol Fe2O3 (s) × 26.3 kJ/1 mol Fe2O3 (s) </span>
<span>C. 26.3 kJ/1 mol Fe2O3 (s) / 3.40 mol Fe2O3 (s) </span>
<span>D. 26.3 kJ/1 mol Fe2O3 (s) – 3.40 mol Fe2O3 (s).
</span>Answer is: B.
Chemical reaction: F<span>e</span>₂O₃<span>(s) + 3CO(g) → 2Fe(s) + 3CO</span>₂<span>(g);</span>ΔH = <span>+ 26.3 kJ.
When one mole of iron(III) oxide reacts 26,3 kJ of energy is required and for 3,2 moles of iron(III) oxide 3,2 times more energy is required.</span>
Answer:
<u>C) 4</u>
Explanation:
<u>The reaction</u> :
- C (s) + 2H₂ (g) ⇒ CH₄ (g)
12g 4g 16g
Hence, based on this we can say that : <u>2 moles of hydrogen gas are needed to produce 16g of methane.</u>
<u />
<u>For 32g of methane</u>
- Number of moles of H₂ = 32/16 × 2
- Number of moles of H₂ = <u>4</u>