Answer:
Where the electric potential is constant, the strength of the electric field is zero.
Explanation:
As a test charge moves in a given direction, the rate of change of the electric potential of the charge gives the potential gradient whose negative value is the same as the value of the electric field. In other words, the negative of the slope or gradient of electric potential (V) in a direction, say x, gives the electric field (Eₓ) in that direction. i.e
Eₓ = - dV / dx ----------(i)
From equation (i) above, if electric potential (V) is constant, then the differential (which is the electric field) gives zero.
<em>Therefore, a constant electric potential means that electric field is zero.</em>
Answer:
0.5 m/s²
Explanation:
according to Newton's second law, we are goven a relationship between force, mass and acceleration, with the formula:
F = m×a
F for force
m for mass
a for acceleration
we use the given data and get:
20 = 40×a
we find a=20/40=0.5m/s²
Answer: I am getting a result around the 54,800 area, so I am selecting the 55,000 HP answer.
If it's volume changes when you move it to the new container it would be a solid
Answer:
I think it is "A" because the wind systems are created by uneven heating of Earth's surface.It also may help form large global wind patterns.
Explanation: