Answer:
V = 4.63 m/s
V = 11.31 m/s
Explanation:
Given,
The distance traveled by the bus, towards north, d = 2.5 km
= 2500 m
The time taken by the trip is, t = 9 min
= 540 s
The velocity of the bus,
V = d / t
= 2500 / 540
= 4.63 m/s
At another point, the bus travels at a constant speed of v = 18 m/s
Therefore the velocity becomes
V = (4.63 + 18)/2
= 11.31 m/s
Hence, the velocity of the bus, V = 11.31 m/s
Answer:
6) False
7) True
8) False
9) False
10) False
11) True
12) True
13) True
14) True
Explanation:
The spacing between two energy levels in an atom shows the energy difference between them. Clearly, B has a greater value of ∆E compared to A. This implies that the wavelength emitted by B is greater than A while B will emit fewer, more energetic photons.
When atoms jump from lower to higher energy levels, photons are absorbed. The kinetic energy of the incident photon determines the frequency, wavelength and colour of light emitted by the atom.
The energy level to which an atom is excited is determined by the kinetic energy of the incident electron. As the voltage increases, the kinetic energy of the electron increases, the further the atom is from the source of free electrons, the greater the required kinetic energy of free electron. When electrons are excited to higher energy levels, they must return to ground state.
Answer: The speed necessary for the electron to have this energy is 466462 m/s
Explanation:
Kinetic energy is the energy posessed by an object by virtue of its motion.

K.E= kinetic energy = 
m= mass of an electron = 
v= velocity of object = ?
Putting in the values in the equation:


The speed necessary for the electron to have this energy is 466462 m/s
Light waves are reflected from front and back surfaces of the thin films and constructive interference between the two reflected waves occurs in different places for different wavelengths. Light shining on the upper surface of the thin film with thickness t is partly reflected at the upper surface (path abc). Light transmitted from the upper surface is partly reflected at the lower surface (path abdef). The two reflected waves come together at point P on the retina of the eye. Depending on the phase relationship, they may interfere constructively or destructively. Different colors have different wavelengths, so the interference may be constructive for some colors and destructive for others.
If you do this on Earth, then the acceleration of the falling object is 9.8 m/s^2 ... NO MATTER what it's mass is.
If its mass is 10 kg, then the force pulling it down is 98.1 Newtons. Most people call that the object's "weight".