The magnitudes of the forces that the ropes must exert on the knot connecting are :
- F₁ = 118 N
- F₂ = 89.21 N
- F₃ = 57.28 N
<u>Given data :</u>
Mass ( M ) = 12 kg
∅₂ = 63°
∅₃ = 45°
<h3>Determine the magnitudes of the forces exerted by the ropes on the connecting knot</h3><h3 />
a) Force exerted by the first rope = weight of rope
∴ F₁ = mg
= 12 * 9.81 ≈ 118 kg
<u>b) Force exerted by the second rope </u>
applying equilibrium condition of force in the vertical direction
F₂ sin∅₂ + F₃ sin∅₃ - mg = 0 ---- ( 1 )
where: F₃ = ( F₂ cos∅₂ / cos∅₃ ) --- ( 2 ) applying equilibrium condition of force in the horizontal direction
Back to equation ( 1 )
F₂ = [ ( mg / cos∅₂ ) / tan∅₂ + tan∅₃ ]
= [ ( 118 / cos 63° ) / ( tan 63° + tan 45° ) ]
= 89.21 N
<u />
<u>C ) </u><u>Force </u><u>exerted by the</u><u> third rope </u>
Applying equation ( 2 )
F₃ = ( F₂ cos∅₂ / cos∅₃ )
= ( 89.21 * cos 63 / cos 45 )
= 57.28 N
Hence we can conclude that The magnitudes of the forces that the ropes must exert on the knot connecting are :
F₁ = 118 N, F₂ = 89.21 N, F₃ = 57.28 N
Learn more about static equilibrium : brainly.com/question/2952156
From the gravity acceleration theorem due to a celestial body or planet, we have that the Force is given as

Where,
F = Strength
G = Universal acceleration constant
M = Mass of the planet
m = body mass
r = Distance between centers of gravity
The acceleration by gravity would be given under the relationship


Here the acceleration is independent of the mass of the body m. This is because the force itself depended on the mass of the object.
On the other hand, the acceleration of Newton's second law states that

Where the acceleration is inversely proportional to the mass but the Force does not depend explicitly on the mass of the object (Like the other case) and therefore the term of the mass must not necessarily be canceled but instead, considered.
Answer:
C
Explanation:
this is because i need more space
Answer:
92 protons
Explanation:
The mass number is
238
, so the nucleus has <u>238 particles</u> in total, including <u>146 neutrons</u>. So to calculate the number of neutrons we have to subtract: 238 − 146 = 92
I believe the answer is chemical reactivity because: Characteristics such as melting point, boiling point, density, solubility, color, odor, etc. are physical properties.