C: if it senses unequal currents
Answer:
4.6 m
Explanation:
First of all, we can find the frequency of the wave in the string with the formula:

where we have
L = 2.00 m is the length of the string
T = 160.00 N is the tension
is the mass linear density
Solving the equation,

The frequency of the wave in the string is transmitted into the tube, which oscillates resonating at same frequency.
The n=1 mode (fundamental frequency) of an open-open tube is given by

where
v = 343 m/s is the speed of sound
Using f = 37.3 Hz and re-arranging the equation, we find L, the length of the tube:

The answer is A. <span>The component waves have different frequencies.
The magnitudes of reinforcement usually really dependent on the number of frequencies and interference is usually caused due to the difference in frequencies. So, we can conclude that if the frequencies are different and causing interference, the reinforcement will also different
</span>
A "screen" or even just a set of parallel bars are highly reflective to electromagnetic waves as long as the open spaces are small compared to the wavelengths.
"Grid" dishes work fine ... with less weight and less wind resistance ... for frequencies below about 3 GHz. (Wavelengths of at least 10 cm.)
(I even worked on a microwave system in South America where huge grid dishes were used on a 90-mile link.)
Answer:
No
Explanation:
From the analogy of the problem we are made to know that "a man standing on the earth can exert the same force with his legs as when he is standing on the moon".
This force he is exerting is due to his weight. If he can have the same weight on the earth and moon, therefore:
weight = mass x acceleration due gravity
His mass and acceleration due to gravity on both terrestrial bodies are the same.
So, his jump height will be the same on earth and on the moon.
In summary, we have been shown that his mass and the acceleration due to gravity on both planets are the same, therefore, his weight will also be the same. His jump height will also be same.