Gas because liquids and solids volumes don't change from switching containers.
<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
Yes! you are :) bc you are FORCING the page to turn, and the broom ti sweep
Answer:
The electric field strength is 
Explanation:
Given that,
Magnetic field = 0.150 T
Speed 
We need to calculate the electric field strength
Using formula of velocity


Where, v = speed
B = magnetic field
Put the value into the formula



Hence, The electric field strength is 
The gas planets usually have extremely high gravitational pulls, the surface isn't solid (since its a gas planet), and gas planets are larger than the inner planets.
<span>Similarities- These planets all have moons and they both revolve around the sun (obviously).
Hope this helps.</span>