Answer: Butane will effuse more quickly because it has a smaller molar mass
Explanation:
Molar mass of C4H10 = 58.123 g/mole
Molar mass of I2 = 253.808 g/mole
Answer:
e. adiabatic process
Explanation:
Adiabatic process -
In the thermodynamic system , an adiabatic process is the one which involves no transfer of mass or heat of the substance , is referred to adiabatic process.
In this process , the temperature need not be constant ,
But only the heat is transferred into or out of the system .
Hence, from the given information of the question,.
The correct option is e. adiabatic process .
Answer:
2C₂H₆ + [7]O₂ → [4]CO₂ + [6]H₂O
Explanation:
Chemical equation:
C₂H₆ + O₂ → CO₂ + H₂O
Balanced chemical equation:
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
Step 1:
2C₂H₆ + O₂ → CO₂ + H₂O
Left hand side Right hand side
C = 4 C = 1
H = 12 H = 2
O = 2 O = 3
Step 2:
2C₂H₆ + O₂ → 4CO₂ + H₂O
Left hand side Right hand side
C = 4 C = 4
H = 12 H = 2
O = 2 O = 9
Step 3:
2C₂H₆ + O₂ → 4CO₂ + 6H₂O
Left hand side Right hand side
C = 4 C = 4
H = 12 H = 12
O = 2 O = 14
Step 4:
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
Left hand side Right hand side
C = 4 C = 4
H = 12 H = 12
O = 14 O = 14
Answer: A volume of 455 mL from 0.550 M KBr solution can be made from 100.0 mL of 2.50 M KBr.
Explanation:
Given:
= ?,
= 0.55 M
= 100.0 mL,
= 2.50 M
Formula used to calculate the volume of KBr is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that a volume of 455 mL from 0.550 M KBr solution can be made from 100.0 mL of 2.50 M KBr.