<h3>
Answer:</h3>
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
<h3>
Explanation:</h3>
- The equation for the reaction shown represents the combustion of ethane.
C₂H₆ + O₂ → CO₂ + H₂O
- To balance the equation we put the coefficients, 2, 7, 4, and 6 on the reactants and products.
2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O
- Balancing chemical equations makes the number of atoms of each element equal on both side of the equation.
- It ensures that chemical equations obey the law of conservation of mass in chemical reactions.
B <span>Divide the chemical equation into two half-reaction equations, identifying which half-reaction is oxidation and which is reduction
</span>
Answer:
Q = 1379.4 J
Explanation:
Given data:
Mass of water = 22 g
Initial temperature = 18°C
Final temperature = 33°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 J/g.
°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 33°C - 18 °C
ΔT = 15°C
Q = 522 g ×4.18 J/g.°C× 15°C
Q = 1379.4 J
Atomic number - 18
1s2,2s2,sp6,3s2,3p6
noble configuration is [Ne]3s2,3p6