My answer is "Watt per square meter".
For E = 200 gpa and i = 65. 0(106) mm4, the slope of end a of the cantilevered beam is mathematically given as
A=0.0048rads
<h3>What is the slope of end a of the cantilevered beam?</h3>
Generally, the equation for the is mathematically given as

Therefore
A=\frac{10+10^2+3^2}{2*240*10^9*65*10^6}+\frac{10+10^3*3}{240*10^9*65*10^{-6}}
A=0.00288+0.00192=0.0048rads
A=0.0048rads
In conclusion, the slope is
A=0.0048rads
Read more about Graph
brainly.com/question/14375099
Answer:
Explanation:
Gravity is a field force since the earth does not have to actually “touch” an object to pull it toward the earth. A magnetic force is a field force that attracts or repels another magnet. Likewise, electric charges cause attracting or repelling forces without actual contact between the charges
Elastic potential energy is equal to the force times the distance of movement. Elastic potential energy = force x distance of displacement. Because the force is = spring constant x displacement, then the Elastic potential energy = spring constant x displacement squared.
Well, it depends. Your latitude on Earth--that is, how close you are to the equator--and the time of year make a difference. I'll explain why. Your motion is made up of four pieces: the rotation of the Earth on its axis, the motion of the Earth around the Sun, the Sun's orbit about the center of the galaxy, and the motion of the whole galaxy.