Reaction of dissociation: Ag₂SO₄ → 2Ag⁺ + SO₄²⁻.
m(Ag₂SO₄) = 4 g.
V(Ag₂SO₄) = 1 l.
n(Ag₂SO₄) = m(Ag₂SO₄) ÷ M(Ag₂SO₄).
n(Ag₂SO₄) = 4 g ÷ 311,8 g/mol.
n(Ag₂SO₄) = 0,0128 mol.
n(Ag⁺) = 2 · 0,0128 mol = 0,0256 mol.
n(Ag₂SO₄) = n(SO₄²⁻) = 0,0128 mol.
c(Ag⁺) = n ÷ V = 0,0256 mol ÷ 1 l = 0,0256 mol/l.
Ksp = c(Ag⁺)² · c(SO₄²⁻).
Ksp = (0,0256 mol/l)² · 0,0128 mol/l.
Ksp = 8,3·10⁻⁶.
Answer:
151.1J
Explanation:
Given parameters:
Mass of iron = 6.21g
Initial temperature of iron = 25°C
Final temperature of iron = 79.8°C
Unknown:
Amount of heat = ?
Solution:
The amount of heat require to cause this temperature can be determined using the expression below;
H = m c (T₂ - T₁)
H is the amount of heat
m is the mass
c is the specific heat capacity
T is the temperature
Specific heat capacity of iron 0.444J/g°C
Insert the parameters and solve;
H = 6.21 x 0.444 x (79.8 - 25)
H = 151.1J
The correct answers would be A, and D
*A & B*
Answers A & B are not possible, as Hydrogen “bonds” are intermolecular forces and do not actually involve transfer or sharing of electrons.
*C & D*
Viscosity and surface tension are not the answer as they are not specific enough to the question.
*E*
Polarity of water molecules is the correct answer, as water molecules are highly polar. The partial positive of the Hydrogen on one water molecule is highly attracted to the partial negative of the Oxygen (due to its lone pairs) on another water molecule.
The molar concentration of the original HF solution : 0.342 M
Further explanation
Given
31.2 ml of 0.200 M NaOH
18.2 ml of HF
Required
The molar concentration of HF
Solution
Titration formula
M₁V₁n₁=M₂V₂n₂
n=acid/base valence (amount of H⁺/OH⁻, for NaOH and HF n =1)
Titrant = NaOH(1)
Titrate = HF(2)
Input the value :
