Answer:
a. +2
b. +3
c. -1
Explanation:
The typical oxidation states can be determined from the periodic table based on the number of valence electrons an atom has.
a. Calcium belongs to group 2A, meaning it has 2 valence electrons and, therefore, would have an oxidation state of +2 in compounds.
b. Aluminum is in group 3A, meaning it has 3 valence electrons and would have an oxidation state of +3 in compounds when the 3 electrons are lost.
c. Fluorine would become fluorine if it gained 1 additional electron to achieve an octet, so its oxidation state would be -1.
Answer:
Ionic
Explanation:
Sodium is Metal, Oxygen is Non-metal. Non-metals and metals are automatic Ionic bonds
Answer:
Explanation:
Group one elements are alkali metals. All alkali metal have one valance electron. They loses their one valance electron and from cation with charge of +1.
Charges on group one.
Hydrogen = +1
Lithium = +1
Sodium = +1
Potassium = +1
Rubidium = +1
Cesium = +1
Francium = +1
Group two elements are alkaline earth metals. All alkaline earth metal have two valance electron. They loses their two valance electron and from cation with charge of +2.
Charges on group two.
Beryllium = +2
Magnesium = +2
Calcium = +2
Strontium = +2
Barium= +2
Radium = +2
Group 13 elements are boron family. All elements have three valance electrons. They loses their three valance electron and from cation with charge of +3.
Charges on group 13.
Boron = +3
Aluminium = +3
Gallium = +3
Indium = +3
Thallium= +3
Group 13 elements are also shows +1 charge by losing one valance electron.
Answer:
All cells have structural and functional similarities. Structures shared by all cells include a cell membrane, an aqueous cytosol, ribosomes, and genetic material (DNA). All cells are composed of the same four types of organic molecules: carbohydrates, lipids, nucleic acids, and proteins.
Explanation:
⊂_ヽ
\\ Λ_Λ
\( ˇωˇ)
> ⌒ヽ
/ へ\
/ / \\
レ ノ ヽ_つ
/ / YOU GOT DAT
( (ヽ
| |、\
| 丿 \ ⌒)
| | ) /
ノ ) Lノ
(_/