Answer:
20.94 m/s
Explanation:
Recall that average velocity is defined as:
V = distance / time
Then, for our case:
V = 754 m / 36 sec = 20.94 m/s
Isn't velocity Distance over time? if the degree isn't adding resistance it should be 4000 ÷ 20 which gives you 200mps ("per second") which is the velocity without resistance.
Answer: 363 Ω.
Explanation:
In a series AC circuit excited by a sinusoidal voltage source, the magnitude of the impedance is found to be as follows:
Z = √((R^2 )+〖(XL-XC)〗^2) (1)
In order to find the values for the inductive and capacitive reactances, as they depend on the frequency, we need first to find the voltage source frequency.
We are told that it has been set to 5.6 times the resonance frequency.
At resonance, the inductive and capacitive reactances are equal each other in magnitude, so from this relationship, we can find out the resonance frequency fo as follows:
fo = 1/2π√LC = 286 Hz
So, we find f to be as follows:
f = 1,600 Hz
Replacing in the value of XL and Xc in (1), we can find the magnitude of the impedance Z at this frequency, as follows:
Z = 363 Ω
The answer is 18000 J
I hope this helps!^^ , if you need the work to be shown please tell me, I hope you have a great day!^^