Answer:
The maximum height the pebble reaches is approximately;
A. 6.4 m
Explanation:
The question is with regards to projectile motion of an object
The given parameters are;
The initial velocity of the pebble, u = 19 m/s
The angle the projectile path of the pebble makes with the horizontal, θ = 36°
The maximum height of a projectile,
, is given by the following equation;
![h_{max} = \dfrac{\left (u \times sin(\theta) \right)^2}{2 \cdot g}](https://tex.z-dn.net/?f=h_%7Bmax%7D%20%3D%20%5Cdfrac%7B%5Cleft%20%28u%20%5Ctimes%20sin%28%5Ctheta%29%20%5Cright%29%5E2%7D%7B2%20%5Ccdot%20g%7D)
Therefore, substituting the known values for the pebble, we have;
![h_{max} = \dfrac{\left (19 \times sin(36 ^{\circ}) \right)^2}{2 \times 9.8} = 6.3633894140470403035477570509439](https://tex.z-dn.net/?f=h_%7Bmax%7D%20%3D%20%5Cdfrac%7B%5Cleft%20%2819%20%5Ctimes%20sin%2836%20%5E%7B%5Ccirc%7D%29%20%5Cright%29%5E2%7D%7B2%20%5Ctimes%209.8%7D%20%3D%206.3633894140470403035477570509439)
Therefore, the maximum height of the pebble projectile,
≈ 6.4 m.