Density is found by dividing mass over volume:
d=M/V. In this problem, we know the density, and the mass. Solve the general equation for volume, then enter the values from the problem and evaluate:
d=m/v [multiply v to both sides, then divide d from both sides]
v=m/d
v=83.8g/(2.33g/cm³)
v=35.965 cm³
v=36.0 cm³ to three significant figures (since your given information only has 3 sig figs)
Answer:
a. At pH 9, the product, p-nitrophenol, will be ionized, the solution will appear yellow in color, and thus can be monitored at the wavelength of maximum absorption for the phenolate ion which is 400nm
Explanation:
In alkaline phosphatase assay, the hydrolysis of p nitrophenyl phosphate to p nitrophenol happens. When the ph is 9, the product which is p nitrophenol would undergo ionization. The solution is going to appear to be of yellow and it can be monitored at a wavelength for maximum absorption of phenolate ions at 400nm.
Option A is the answer to the question.
Is there a picture? If not then it’s probably precipitate
Answer:
Please don not post Questions that don'y make sense
Explanation:
P.s: Thanks for the point and have anice day
<h3>
Answer:</h3>
61.3 mL
<h3>
Explanation:</h3>
From the data given;
- Mass of volumetric flask is 109.1 g
- Mass of salt is 5.01 g
- Mass of Volumetric flask and salt is 113.5 g
- Mass of volumetric flask and salt solution is 170.4 g
- Mass of salt solution is 61.3 g
We are required to calculate the volume of salt solution;
We need to know the relationship between density, mass and volume of a solution.
Density = Mass ÷ Volume
Therefore, given mass and density we can find the volume.
Rearranging the formula;
Volume = Mass ÷ density
Assuming the density of salt solution is 1 g/mL
Then;
Volume = Mass of the salt solution ÷ density of the salt solution
= 61.3 g ÷ 1 g/mL
= 61.3 mL
Therefore, the volume of the salt solution is 61.3 mL